

    
      
          
            
  
Welcome to MMagic’s documentation!

Languages:
English [https://mmagic.readthedocs.io/en/latest/]
|
简体中文 [https://mmagic.readthedocs.io/zh_CN/latest/]

MMagic (Multimodal Advanced, Generative, and Intelligent Creation) is an open-source AIGC toolbox for professional AI researchers and machine learning engineers to explore image and video processing, editing and generation.

MMagic supports various foundamental generative models, including:


	Unconditional Generative Adversarial Networks (GANs)


	Conditional Generative Adversarial Networks (GANs)


	Internal Learning


	Diffusion Models


	And many other generative models are coming soon!




MMagic supports various applications, including:


	Text-to-Image


	Image-to-image translation


	3D-aware generation


	Image super-resolution


	Video super-resolution


	Video frame interpolation


	Image inpainting


	Image matting


	Image restoration


	Image colorization


	Image generation


	And many other applications are coming soon!




MMagic is based on PyTorch [https://pytorch.org] and is a part of the OpenMMLab project [https://openmmlab.com/].
Codes are available on GitHub [https://github.com/open-mmlab/mmagic].
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Contributing guidance

Welcome to the MMagic community, we are committed to building a Multimodal Advanced, Generative, and Intelligent Creation Toolbox.

This section introduces following contents:


	Contributing guidance


	Pull Request Workflow


	1. Fork and clone


	2. Configure pre-commit


	3. Create a development branch


	4. Commit the code and pass the unit test


	5. Push the code to remote


	6. Create a Pull Request


	7. Resolve conflicts






	Guidance


	Unit test


	Document rendering






	Code style


	Python


	C++ and CUDA






	PR Specs








All kinds of contributions are welcomed, including but not limited to

Fix bug

You can directly post a Pull Request to fix typo in code or documents

The steps to fix the bug of code implementation are as follows.


	If the modification involve significant changes, you should create an issue first and describe the error information and how to trigger the bug. Other developers will discuss with you and propose an proper solution.


	Posting a pull request after fixing the bug and adding corresponding unit test.




New Feature or Enhancement


	If the modification involve significant changes, you should create an issue to discuss with our developers to propose an proper design.


	Post a Pull Request after implementing the new feature or enhancement and add corresponding unit test.




Document

You can directly post a pull request to fix documents. If you want to add a document, you should first create an issue to check if it is reasonable.


Pull Request Workflow

If you’re not familiar with Pull Request, don’t worry! The following guidance will tell you how to create a Pull Request step by step. If you want to dive into the develop mode of Pull Request, you can refer to the official documents [https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests]


1. Fork and clone

If you are posting a pull request for the first time, you should fork the OpenMMLab repositories by clicking the Fork button in the top right corner of the GitHub page, and the forked repositories will appear under your GitHub profile.


Then, you can clone the repositories to local:

git clone git@github.com:{username}/mmagic.git





After that, you should ddd official repository as the upstream repository

git remote add upstream git@github.com:open-mmlab/mmagic





Check whether remote repository has been added successfully by git remote -v

origin	git@github.com:{username}/mmagic.git (fetch)
origin	git@github.com:{username}/mmagic.git (push)
upstream	git@github.com:open-mmlab/mmagic (fetch)
upstream	git@github.com:open-mmlab/mmagic (push)






Note

Here’s a brief introduction to origin and upstream. When we use “git clone”, we create an “origin” remote by default, which points to the repository cloned from. As for “upstream”, we add it ourselves to point to the target repository. Of course, if you don’t like the name “upstream”, you could name it as you wish. Usually, we’ll push the code to “origin”. If the pushed code conflicts with the latest code in official(“upstream”), we should pull the latest code from upstream to resolve the conflicts, and then push to “origin” again. The posted Pull Request will be updated automatically.
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MMagic projects

Welcome to the MMagic community!
The MMagic ecosystem consists of tutorials, libraries, and projects from a broad set of researchers in academia and industry, ML and application engineers.
The goal of this ecosystem is to support, accelerate, and aid in your exploration with MMagic for AIGC such as image, video, 3D content generation, editing and processing.

Here are a few projects that are built upon MMagic. They are examples of how to use MMagic as a library, to make your projects more maintainable.
Please find more projects in MMagic Ecosystem [https://openmmlab.com/ecosystem].


Show your projects on OpenMMLab Ecosystem

You can submit your project so that it can be shown on the homepage of OpenMMLab [https://openmmlab.com/ecosystem].




Add example projects to MMagic

Here is an example project about how to add your projects to MMagic.
You can copy and create your own project from the example project.

We also provide some documentation listed below for your reference:


	Contribution Guide [https://mmagic.readthedocs.io/en/latest/community/contributing.html]

The guides for new contributors about how to add your projects to MMagic.



	New Model Guide [https://mmagic.readthedocs.io/en/latest/howto/models.html]

The documentation of adding new models.



	Discussions [https://github.com/open-mmlab/mmagic/discussions]

Welcome to start a discussion!








Projects of libraries and toolboxes


	PowerVQE [https://github.com/ryanxingql/powervqe]: Open framework for quality enhancement of compressed videos based on PyTorch and MMagic.


	VR-Baseline [https://github.com/linjing7/VR-Baseline]: Video Restoration Toolbox.


	Derain-Toolbox [https://github.com/biubiubiiu/derain-toolbox]: Single Image Deraining Toolbox and Benchmark







Projects of research papers


	Towards Interpretable Video Super-Resolution via Alternating Optimization, ECCV 2022 [https://arxiv.org/abs/2207.10765][github] [https://github.com/caojiezhang/DAVSR]


	SepLUT:Separable Image-adaptive Lookup Tables for Real-time Image Enhancement, ECCV 2022 [https://arxiv.org/abs/2207.08351][github] [https://github.com/ImCharlesY/SepLUT]


	TTVSR: Learning Trajectory-Aware Transformer for Video Super-Resolution, CVPR 2022 [https://arxiv.org/abs/2204.04216][github] [https://github.com/researchmm/TTVSR]


	Arbitrary-Scale Image Synthesis, CVPR 2022 [https://arxiv.org/pdf/2204.02273.pdf][github] [https://github.com/vglsd/ScaleParty]


	Investigating Tradeoffs in Real-World Video Super-Resolution(RealBasicVSR), CVPR 2022 [https://arxiv.org/abs/2111.12704][github] [https://github.com/ckkelvinchan/RealBasicVSR]


	BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment, CVPR 2022 [https://arxiv.org/abs/2104.13371][github] [https://github.com/ckkelvinchan/BasicVSR_PlusPlus]


	Multi-Scale Memory-Based Video Deblurring, CVPR 2022 [https://arxiv.org/abs/2204.02977][github] [https://github.com/jibo27/MemDeblur]


	AdaInt:Learning Adaptive Intervals for 3D Lookup Tables on Real-time Image Enhancement, CVPR 2022 [https://arxiv.org/abs/2204.13983][github] [https://github.com/ImCharlesY/AdaInt]


	A New Dataset and Transformer for Stereoscopic Video Super-Resolution, CVPRW 2022 [https://openaccess.thecvf.com/content/CVPR2022W/NTIRE/papers/Imani_A_New_Dataset_and_Transformer_for_Stereoscopic_Video_Super-Resolution_CVPRW_2022_paper.pdf][github] [https://github.com/H-deep/Trans-SVSR]


	Liquid warping GAN with attention: A unified framework for human image synthesis, TPAMI 2021 [https://arxiv.org/pdf/2011.09055.pdf][github] [https://github.com/iPERDance/iPERCore]


	BasicVSR:The Search for Essential Components in Video Super-Resolution and Beyond, CVPR 2021 [https://arxiv.org/abs/2012.02181][github] [https://github.com/ckkelvinchan/BasicVSR-IconVSR]


	GLEAN:Generative Latent Bank for Large-Factor Image Super-Resolution, CVPR 2021 [https://arxiv.org/abs/2012.00739][github] [https://github.com/ckkelvinchan/GLEAN]


	DAN:Unfolding the Alternating Optimization for Blind Super Resolution, NeurIPS 2020 [https://arxiv.org/abs/2010.02631v4][github] [https://github.com/AlexZou14/DAN-Basd-on-Openmmlab]
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Overview

Welcome to MMagic! In this section, you will know about


	Overview


	What is MMagic?


	Why should I use MMagic?


	Get started


	User guides


	Advanced guides


	How to













What is MMagic?

MMagic (Multimodal Advanced, Generative, and Intelligent Creation) is an open-source AIGC toolbox for professional AI researchers and machine learning engineers to explore image and video processing, editing and generation.

MMagic allows researchers and engineers to use pre-trained state-of-the-art models, train and develop new customized models easily.

MMagic supports various foundamental generative models, including:


	Unconditional Generative Adversarial Networks (GANs)


	Conditional Generative Adversarial Networks (GANs)


	Internal Learning


	Diffusion Models


	And many other generative models are coming soon!




MMagic supports various applications, including:


	Text-to-Image


	Image-to-image translation


	3D-aware generation


	Image super-resolution


	Video super-resolution


	Video frame interpolation


	Image inpainting


	Image matting


	Image restoration


	Image colorization


	Image generation


	And many other applications are coming soon!
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Installation

In this section, you will know about:


	Installation


	Installation


	Prerequisites


	Best practices


	Customize installation


	CUDA Version


	Install MMCV without MIM


	Using MMagic with Docker


	Trouble shooting






	Developing with multiple MMagic versions













Installation

We recommend that users follow our Best practices to install MMagic.
However, the whole process is highly customizable. See Customize installation section for more information.


Prerequisites

In this section, we demonstrate how to prepare an environment with PyTorch.

MMagic works on Linux, Windows, and macOS. It requires:


	Python >= 3.7


	PyTorch [https://pytorch.org/] >= 1.8


	MMCV [https://github.com/open-mmlab/mmcv] >= 2.0.0




If you are experienced with PyTorch and have already installed it,
just skip this part and jump to the next section. Otherwise, you can follow these steps for the preparation.

Step 0.
Download and install Miniconda from official website [https://docs.conda.io/en/latest/miniconda.html].

Step 1.
Create a conda environment [https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/environments.html#] and activate it

conda create --name mmagic python=3.8 -y
conda activate mmagic





Step 2.
Install PyTorch following official instructions [https://pytorch.org/get-started/locally/], e.g.


	On GPU platforms:

conda install pytorch torchvision cudatoolkit=11.3 -c pytorch







	On CPU platforms:

conda install pytorch=1.10 torchvision cpuonly -c pytorch












Best practices

Step 0. Install MMCV [https://github.com/open-mmlab/mmcv] using MIM [https://github.com/open-mmlab/mim].

pip install -U openmim
mim install 'mmcv>=2.0.0'





Step 1. Install MMEngine [https://github.com/open-mmlab/mmengine].

mim install 'mmengine'





Or

pip install mmengine





Or

pip install git+https://github.com/open-mmlab/mmengine.git





Step 2. Install MMagic.

mim install 'mmagic'





Or

pip install mmagic





Or install MMagic [https://github.com/open-mmlab/mmagic] from the source code.

git clone https://github.com/open-mmlab/mmagic.git
cd mmagic
pip3 install -e . -v





Step 5.
Verify MMagic has been successfully installed.

cd ~
python -c "import mmagic; print(mmagic.__version__)"
# Example output: 1.0.0





The installation is successful if the version number is output correctly.


Note

You may be curious about what -e . means when supplied with pip install.
Here is the description:


	-e means editable mode [https://pip.pypa.io/en/latest/cli/pip_install/#cmdoption-e].
When import mmagic, modules under the cloned directory are imported.
If pip install without -e, pip will copy cloned codes to somewhere like lib/python/site-package.
Consequently, modified code under the cloned directory takes no effect unless pip install again.
Thus, pip install with -e is particularly convenient for developers. If some codes are modified, new codes will be imported next time without reinstallation.


	. means code in this directory




You can also use pip install -e .[all], which will install more dependencies, especially for pre-commit hooks and unittests.






Customize installation


CUDA Version

When installing PyTorch, you need to specify the version of CUDA. If you are not clear on which to choose, follow our recommendations:


	For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.


	For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is more lightweight.




Please make sure the GPU driver satisfies the minimum version requirements.
See this table [https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions] for more information.

note
Installing CUDA runtime libraries is enough if you follow our best practices,
because no CUDA code will be compiled locally.
However, if you hope to compile MMCV from source or develop other CUDA operators,
you need to install the complete CUDA toolkit from NVIDIA’s website [https://developer.nvidia.com/cuda-downloads],
and its version should match the CUDA version of PyTorch. i.e., the specified version of cudatoolkit in conda install command.




Install MMCV without MIM

MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex way.
MIM solves such dependencies automatically and makes the installation easier. However, it is not a must.

To install MMCV with pip instead of MIM, please follow MMCV installation guides [https://mmcv.readthedocs.io/en/latest/get_started/installation.html].
This requires manually specifying a find-url based on PyTorch version and its CUDA version.

For example, the following command install mmcv-full built for PyTorch 1.10.x and CUDA 11.3.

pip install 'mmcv>=2.0.0' -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10/index.html








Using MMagic with Docker

We provide a Dockerfile [https://github.com/open-mmlab/mmagic/blob/main/docker/Dockerfile] to build an image.
Ensure that your docker version [https://docs.docker.com/engine/install/] >=19.03.

# build an image with PyTorch 1.8, CUDA 11.1
# If you prefer other versions, just modified the Dockerfile
docker build -t mmagic docker/





Run it with

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmagic/data mmagic








Trouble shooting

If you have some issues during the installation, please first view the FAQ page.
You may open an issue [https://github.com/open-mmlab/mmagic/issues/new/choose] on GitHub if no solution is found.






Developing with multiple MMagic versions

The train and test scripts already modify the PYTHONPATH to ensure the script uses the MMagic in the current directory.

To use the default MMagic installed in the environment rather than that you are working with, you can remove the following line in those scripts

PYTHONPATH="$(dirname $0)/..":$PYTHONPATH
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Quick run

After installing MMagic successfully, now you are able to play with MMagic! To generate an image from text, you only need several lines of codes by MMagic!

from mmagic.apis import MMagicInferencer
sd_inferencer = MMagicInferencer(model_name='stable_diffusion')
text_prompts = 'A panda is having dinner at KFC'
result_out_dir = 'output/sd_res.png'
sd_inferencer.infer(text=text_prompts, result_out_dir=result_out_dir)





Or you can just run the following command.

python demo/mmagic_inference_demo.py \
    --model-name stable_diffusion \
    --text "A panda is having dinner at KFC" \
    --result-out-dir ./output/sd_res.png





You will see a new image sd_res.png in folder output/, which contained generated samples.

What’s more, if you want to make these photos much more clear,
you only need several lines of codes for image super-resolution by MMagic!

from mmagic.apis import MMagicInferencer
config = 'configs/esrgan/esrgan_x4c64b23g32_1xb16-400k_div2k.py'
checkpoint = 'https://download.openmmlab.com/mmediting/restorers/esrgan/esrgan_x4c64b23g32_1x16_400k_div2k_20200508-f8ccaf3b.pth'
img_path = 'tests/data/image/lq/baboon_x4.png'
editor = MMagicInferencer('esrgan', model_config=config, model_ckpt=checkpoint)
output = editor.infer(img=img_path,result_out_dir='output.png')





Now, you can check your fancy photos in output.png.
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Tutorial 1: Learn about Configs in MMagic

We incorporate modular and inheritance design into our config system, which is convenient to conduct various experiments.
If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/CONFIG to see the complete config.

You can learn about the usage of our config system according to the following tutorials.


	Tutorial 1: Learn about Configs in MMagic


	Modify config through script arguments


	Config file structure


	Config name style


	An example of EDSR


	Model config


	Data config


	Data pipeline


	Dataloader






	Evaluation config


	Training and testing config


	Optimization config


	Hook config


	Runtime config






	An example of StyleGAN2


	Model config


	Dataset and evaluator config


	Training and testing config


	Optimization config


	Hook config


	Runtime config






	Other examples


	An example of config system for inpainting


	An example of config system for matting


	An example of config system for restoration













Modify config through script arguments

When submitting jobs using tools/train.py or tools/test.py, you may specify --cfg-options to in-place modify the config.


	Update config keys of dict chains.

The config options can be specified following the order of the dict keys in the original config.
For example, --cfg-options test_cfg.use_ema=False changes the default sampling model to the original generator,
and  --cfg-options train_dataloader.batch_size=8 changes the batch size of train dataloader.



	Update keys inside a list of configs.

Some config dicts are composed as a list in your config.
For example, the training pipeline train_dataloader.dataset.pipeline is normally a list
e.g. [dict(type='LoadImageFromFile'), ...]. If you want to change 'LoadImageFromFile' to 'LoadImageFromWebcam' in the pipeline,
you may specify --cfg-options train_dataloader.dataset.pipeline.0.type=LoadImageFromWebcam.
The training pipeline train_pipeline is normally a list
e.g. [dict(type='LoadImageFromFile'), ...]. If you want to change 'LoadImageFromFile' to 'LoadMask' in the pipeline,
you may specify --cfg-options train_pipeline.0.type=LoadMask.



	Update values of list/tuples.

If the value to be updated is a list or a tuple. You can set --cfg-options key="[a,b]" or --cfg-options key=a,b. It also allows nested list/tuple values, e.g., --cfg-options key="[(a,b),(c,d)]". Note that the quotation mark ” is necessary to support list/tuple data types, and that NO white space is allowed inside the quotation marks in the specified value.








Config file structure

There are 3 basic component types under config/_base_: datasets, models and default_runtime.
Many methods could be easily constructed with one of each like AOT-GAN, EDVR, GLEAN, StyleGAN2, CycleGAN, SinGAN, etc.
Configs consisting of components from _base_ are called primitive.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For easy understanding, we recommend contributors to inherit from existing methods.
For example, if some modification is made base on BasicVSR,
user may first inherit the basic BasicVSR structure by specifying _base_ = ../basicvsr/basicvsr_reds4.py,
then modify the necessary fields in the config files.
If some modification is made base on StyleGAN2,
user may first inherit the basic StyleGAN2 structure by specifying _base_ = ../styleganv2/stylegan2_c2_ffhq_256_b4x8_800k.py,
then modify the necessary fields in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods,
you may create a folder xxx under configs,

Please refer to MMEngine [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/config.md] for detailed documentation.




Config name style

{model}_[module setting]_{training schedule}_{dataset}





{xxx} is required field and [yyy] is optional.


	{model}: model type like stylegan, dcgan, basicvsr, dim, etc.
Settings referred in the original paper are included in this field as well (e.g., Stylegan2-config-f, edvrm of edvrm_8xb4-600k_reds.)


	[module setting]: specific setting for some modules, including Encoder, Decoder, Generator, Discriminator, Normalization, loss, Activation, etc. E.g. c64n7 of basicvsr-pp_c64n7_8xb1-600k_reds4, learning rate Glr4e-4_Dlr1e-4 for dcgan, gamma32.8 for stylegan3, woReLUInplace in sagan. In this section, information from different submodules (e.g., generator and discriminator) are connected with _.


	{training_scheduler}: specific setting for training, including batch_size, schedule, etc. For example, learning rate (e.g., lr1e-3), number of gpu and batch size is used (e.g., 8xb32), and total iterations (e.g., 160kiter) or number of images shown in the discriminator (e.g., 12Mimgs).


	{dataset}: dataset name and data size info like celeba-256x256 of deepfillv1_4xb4_celeba-256x256, reds4 of basicvsr_2xb4_reds4, ffhq, lsun-car, celeba-hq.







An example of EDSR

To help the users have a basic idea of a complete config,
we make a brief comments on the config of the EDSR model [https://github.com/open-mmlab/mmagic/blob/main/configs/edsr/edsr_x2c64b16_g1_300k_div2k.py] we implemented as the following.
For more detailed usage and the corresponding alternative for each modules,
please refer to the API documentation and the tutorial in MMEngine [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/config.md].


Model config

In MMagic’s config, we use model fields to set up a model.

model = dict(
    type='BaseEditModel',  # Name of the model
    generator=dict(  # Config of the generator
        type='EDSRNet',  # Type of the generator
        in_channels=3,  # Channel number of inputs
        out_channels=3,  # Channel number of outputs
        mid_channels=64,  # Channel number of intermediate features
        num_blocks=16,  # Block number in the trunk network
        upscale_factor=scale, # Upsampling factor
        res_scale=1,  # Used to scale the residual in residual block
        rgb_mean=(0.4488, 0.4371, 0.4040),  # Image mean in RGB orders
        rgb_std=(1.0, 1.0, 1.0)),  # Image std in RGB orders
    pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean')  # Config for pixel loss
    train_cfg=dict(),  # Config of training model.
    test_cfg=dict(),  # Config of testing model.
    data_preprocessor=dict(  # The Config to build data preprocessor
        type='DataPreprocessor', mean=[0., 0., 0.], std=[255., 255.,
                                                             255.]))








Data config

Dataloaders [https://pytorch.org/docs/stable/data.html?highlight=data%20loader#torch.utils.data.DataLoader] are required for the training, validation, and testing of the runner [https://mmengine.readthedocs.io/en/latest/tutorials/runner.html].
Dataset and data pipeline need to be set to build the dataloader. Due to the complexity of this part, we use intermediate variables to simplify the writing of dataloader configs.


Data pipeline

train_pipeline = [  # Training data processing pipeline
    dict(type='LoadImageFromFile',  # Load images from files
        key='img',  # Keys in results to find the corresponding path
        color_type='color',  # Color type of image
        channel_order='rgb',  # Channel order of image
        imdecode_backend='cv2'),  # decode backend
    dict(type='LoadImageFromFile',  # Load images from files
        key='gt',  # Keys in results to find the corresponding path
        color_type='color',  # Color type of image
        channel_order='rgb',  # Channel order of image
        imdecode_backend='cv2'),  # decode backend
    dict(type='SetValues', dictionary=dict(scale=scale)),  # Set value to destination keys
    dict(type='PairedRandomCrop', gt_patch_size=96),  # Paired random crop
    dict(type='Flip',  # Flip images
        keys=['lq', 'gt'],  # Images to be flipped
        flip_ratio=0.5,  # Flip ratio
        direction='horizontal'),  # Flip direction
    dict(type='Flip',  # Flip images
        keys=['lq', 'gt'],  # Images to be flipped
        flip_ratio=0.5,  # Flip ratio
        direction='vertical'),  # Flip direction
    dict(type='RandomTransposeHW',  # Random transpose h and w for images
        keys=['lq', 'gt'],  # Images to be transposed
        transpose_ratio=0.5  # Transpose ratio
        ),
    dict(type='PackInputs')  # The config of collecting data from the current pipeline
]
test_pipeline = [  # Test pipeline
    dict(type='LoadImageFromFile',  # Load images from files
        key='img',  # Keys in results to find corresponding path
        color_type='color',  # Color type of image
        channel_order='rgb',  # Channel order of image
        imdecode_backend='cv2'),  # decode backend
    dict(type='LoadImageFromFile',  # Load images from files
        key='gt',  # Keys in results to find corresponding path
        color_type='color',  # Color type of image
        channel_order='rgb',  # Channel order of image
        imdecode_backend='cv2'),  # decode backend
    dict(type='PackInputs')  # The config of collecting data from the current pipeline
]








Dataloader

dataset_type = 'BasicImageDataset'  # The type of dataset
data_root = 'data'  # Root path of data
train_dataloader = dict(
    num_workers=4,  # The number of workers to pre-fetch data for each single GPU
    persistent_workers=False,  # Whether maintain the workers Dataset instances alive
    sampler=dict(type='InfiniteSampler', shuffle=True),  # The type of data sampler
    dataset=dict(  # Train dataset config
        type=dataset_type,  # Type of dataset
        ann_file='meta_info_DIV2K800sub_GT.txt',  # Path of annotation file
        metainfo=dict(dataset_type='div2k', task_name='sisr'),
        data_root=data_root + '/DIV2K',  # Root path of data
        data_prefix=dict(  # Prefix of image path
            img='DIV2K_train_LR_bicubic/X2_sub', gt='DIV2K_train_HR_sub'),
        filename_tmpl=dict(img='{}', gt='{}'),  # Filename template
        pipeline=train_pipeline))
val_dataloader = dict(
    num_workers=4,  # The number of workers to pre-fetch data for each single GPU
    persistent_workers=False,  # Whether maintain the workers Dataset instances alive
    drop_last=False,  # Whether drop the last incomplete batch
    sampler=dict(type='DefaultSampler', shuffle=False),  # The type of data sampler
    dataset=dict(  # Validation dataset config
        type=dataset_type,  # Type of dataset
        metainfo=dict(dataset_type='set5', task_name='sisr'),
        data_root=data_root + '/Set5',  # Root path of data
        data_prefix=dict(img='LRbicx2', gt='GTmod12'),  # Prefix of image path
        pipeline=test_pipeline))
test_dataloader = val_dataloader










Evaluation config

Evaluators [https://mmengine.readthedocs.io/en/latest/tutorials/evaluation.html] are used to compute the metrics of the trained model on the validation and testing datasets.
The config of evaluators consists of one or a list of metric configs:

val_evaluator = [
    dict(type='MAE'),  # The name of metrics to evaluate
    dict(type='PSNR', crop_border=scale),  # The name of metrics to evaluate
    dict(type='SSIM', crop_border=scale),  # The name of metrics to evaluate
]
test_evaluator = val_evaluator # The config for testing evaluator








Training and testing config

MMEngine’s runner uses Loop to control the training, validation, and testing processes.
Users can set the maximum training iteration and validation intervals with these fields.

train_cfg = dict(
    type='IterBasedTrainLoop',  # The name of train loop type
    max_iters=300000,  # The number of total iterations
    val_interval=5000,  # The number of validation interval iterations
)
val_cfg = dict(type='ValLoop')  # The name of validation loop type
test_cfg = dict(type='TestLoop')  # The name of test loop type








Optimization config

optim_wrapper is the field to configure optimization related settings.
The optimizer wrapper not only provides the functions of the optimizer, but also supports functions such as gradient clipping, mixed precision training, etc. Find more in optimizer wrapper tutorial [https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.html].

optim_wrapper = dict(
    dict(
        type='OptimWrapper',
        optimizer=dict(type='Adam', lr=0.00001),
    )
)  # Config used to build optimizer, support all the optimizers in PyTorch whose arguments are also the same as those in PyTorch.





param_scheduler is a field that configures methods of adjusting optimization hyper-parameters such as learning rate and momentum.
Users can combine multiple schedulers to create a desired parameter adjustment strategy.
Find more in parameter scheduler tutorial [https://mmengine.readthedocs.io/en/latest/tutorials/param_scheduler.html].

param_scheduler = dict(  # Config of learning policy
    type='MultiStepLR', by_epoch=False, milestones=[200000], gamma=0.5)








Hook config

Users can attach hooks to training, validation, and testing loops to insert some operations during running. There are two different hook fields, one is default_hooks and the other is custom_hooks.

default_hooks is a dict of hook configs. default_hooks are the hooks must required at runtime. They have default priority which should not be modified. If not set, runner will use the default values. To disable a default hook, users can set its config to None.

default_hooks = dict(  # Used to build default hooks
    checkpoint=dict(  # Config to set the checkpoint hook
        type='CheckpointHook',
        interval=5000,  # The save interval is 5000 iterations
        save_optimizer=True,
        by_epoch=False,  # Count by iterations
        out_dir=save_dir,
    ),
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=100),  # Config to register logger hook
    param_scheduler=dict(type='ParamSchedulerHook'),
    sampler_seed=dict(type='DistSamplerSeedHook'),
)





custom_hooks is a list of hook configs. Users can develop there own hooks and insert them in this field.

custom_hooks = [dict(type='BasicVisualizationHook', interval=1)] # Config of visualization hook








Runtime config

default_scope = 'mmagic' # Used to set registries location
env_cfg = dict(  # Parameters to setup distributed training, the port can also be set
    cudnn_benchmark=False,
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=4),
    dist_cfg=dict(backend='nccl'),
)
log_level = 'INFO'  # The level of logging
log_processor = dict(type='LogProcessor', window_size=100, by_epoch=False)  # Used to build log processor
load_from = None  # load models as a pre-trained model from a given path. This will not resume training.
resume = False  # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved.










An example of StyleGAN2

Taking Stylegan2 at 1024x1024 scale [https://github.com/open-mmlab/mmagic/blob/main/configs//styleganv2/stylegan2_c2_8xb4-fp16-global-800kiters_quicktest-ffhq-256x256.py] as an example,
we introduce each field in the config according to different function modules.


Model config

In addition to neural network components such as generator, discriminator etc, it also requires data_preprocessor, loss_config, and some of them contains ema_config.
data_preprocessor is responsible for processing a batch of data output by dataloader.
loss_config is responsible for weight of loss terms.
ema_config is responsible for exponential moving average (EMA) operation for generator.

model = dict(
    type='StyleGAN2',  # The name of the model
    data_preprocessor=dict(type='DataPreprocessor'),  # The config of data preprocessor, usually includs image normalization and padding
    generator=dict(  # The config for generator
        type='StyleGANv2Generator',  # The name of the generator
        out_size=1024,  # The output resolution of the generator
        style_channels=512),  # The number of style channels of the generator
    discriminator=dict(  # The config for discriminator
        type='StyleGAN2Discriminator',  # The name of the discriminator
        in_size=1024),  # The input resolution of the discriminator
    ema_config=dict(  # The config for EMA
        type='ExponentialMovingAverage',  # Specific the type of Average model
        interval=1,  # The interval of EMA operation
        momentum=0.9977843871238888),  # The momentum of EMA operation
    loss_config=dict(  # The config for loss terms
        r1_loss_weight=80.0,  # The weight for r1 gradient penalty
        r1_interval=16,  # The interval of r1 gradient penalty
        norm_mode='HWC',  # The normalization mode for r1 gradient penalty
        g_reg_interval=4,  # The interval for generator's regularization
        g_reg_weight=8.0,  # The weight for generator's regularization
        pl_batch_shrink=2))  # The factor of shrinking the batch size in path length regularization








Dataset and evaluator config

Dataloaders [https://pytorch.org/docs/stable/data.html?highlight=data%20loader#torch.utils.data.DataLoader] are required for the training, validation, and testing of the runner [https://mmengine.readthedocs.io/en/latest/tutorials/runner.html].
Dataset and data pipeline need to be set to build the dataloader. Due to the complexity of this part, we use intermediate variables to simplify the writing of dataloader configs.

dataset_type = 'BasicImageDataset'  # Dataset type, this will be used to define the dataset
data_root = './data/ffhq/'  # Root path of data

train_pipeline = [  # Training data process pipeline
    dict(type='LoadImageFromFile', key='img'),  # First pipeline to load images from file path
    dict(type='Flip', keys=['img'], direction='horizontal'),  # Argumentation pipeline that flip the images
    dict(type='PackInputs', keys=['img'])  # The last pipeline that formats the annotation data (if have) and decides which keys in the data should be packed into data_samples
]
val_pipeline = [
    dict(type='LoadImageFromFile', key='img'),  # First pipeline to load images from file path
    dict(type='PackInputs', keys=['img'])  # The last pipeline that formats the annotation data (if have) and decides which keys in the data should be packed into data_samples
]
train_dataloader = dict(  # The config of train dataloader
    batch_size=4,  # Batch size of a single GPU
    num_workers=8,  # Worker to pre-fetch data for each single GPU
    persistent_workers=True,  # If ``True``, the dataloader will not shutdown the worker processes after an epoch end, which can accelerate training speed.
    sampler=dict(  # The config of training data sampler
        type='InfiniteSampler',  # InfiniteSampler for iteratiion-based training. Refers to https://github.com/open-mmlab/mmengine/blob/fe0eb0a5bbc8bf816d5649bfdd34908c258eb245/mmengine/dataset/sampler.py#L107
        shuffle=True),  # Whether randomly shuffle the training data
    dataset=dict(  # The config of the training dataset
        type=dataset_type,
        data_root=data_root,
        pipeline=train_pipeline))
val_dataloader = dict(  # The config of validation dataloader
    batch_size=4,  # Batch size of a single GPU
    num_workers=8,  # Worker to pre-fetch data for each single GPU
    dataset=dict(  # The config of the validation dataset
        type=dataset_type,
        data_root=data_root,
        pipeline=val_pipeline),
    sampler=dict(  # The config of validatioin data sampler
        type='DefaultSampler',  # DefaultSampler which supports both distributed and non-distributed training. Refer to https://github.com/open-mmlab/mmengine/blob/fe0eb0a5bbc8bf816d5649bfdd34908c258eb245/mmengine/dataset/sampler.py#L14
        shuffle=False),  # Whether randomly shuffle the validation data
    persistent_workers=True)
test_dataloader = val_dataloader  # The config of the testing dataloader





Evaluators [https://mmengine.readthedocs.io/en/latest/tutorials/evaluation.html] are used to compute the metrics of the trained model on the validation and testing datasets.
The config of evaluators consists of one or a list of metric configs:

val_evaluator = dict(  # The config for validation evaluator
    type='Evaluator',  # The type of evaluation
    metrics=[  # The config for metrics
        dict(
            type='FrechetInceptionDistance',
            prefix='FID-Full-50k',
            fake_nums=50000,
            inception_style='StyleGAN',
            sample_model='ema'),
        dict(type='PrecisionAndRecall', fake_nums=50000, prefix='PR-50K'),
        dict(type='PerceptualPathLength', fake_nums=50000, prefix='ppl-w')
    ])
test_evaluator = val_evaluator  # The config for testing evaluator








Training and testing config

MMEngine’s runner uses Loop to control the training, validation, and testing processes.
Users can set the maximum training iteration and validation intervals with these fields.

train_cfg = dict(  # The config for training
    by_epoch=False,  # Set `by_epoch` as False to use iteration-based training
    val_begin=1,  # Which iteration to start the validation
    val_interval=10000,  # Validation intervals
    max_iters=800002)  # Maximum training iterations
val_cfg = dict(type='MultiValLoop')  # The validation loop type
test_cfg = dict(type='MultiTestLoop')  # The testing loop type








Optimization config

optim_wrapper is the field to configure optimization related settings.
The optimizer wrapper not only provides the functions of the optimizer, but also supports functions such as gradient clipping, mixed precision training, etc. Find more in optimizer wrapper tutorial [https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.html].

optim_wrapper = dict(
    constructor='MultiOptimWrapperConstructor',
    generator=dict(
        optimizer=dict(type='Adam', lr=0.0016, betas=(0, 0.9919919678228657))),
    discriminator=dict(
        optimizer=dict(
            type='Adam',
            lr=0.0018823529411764706,
            betas=(0, 0.9905854573074332))))





param_scheduler is a field that configures methods of adjusting optimization hyperparameters such as learning rate and momentum.
Users can combine multiple schedulers to create a desired parameter adjustment strategy.
Find more in parameter scheduler tutorial [https://mmengine.readthedocs.io/en/latest/tutorials/param_scheduler.html].
Since StyleGAN2 do not use parameter scheduler, we use config in CycleGAN [https://github.com/open-mmlab/mmagic/blob/main/configs/cyclegan/cyclegan_lsgan-id0-resnet-in_1xb1-250kiters_summer2winter.py] as an example:

# parameter scheduler in CycleGAN config
param_scheduler = dict(
    type='LinearLrInterval',  # The type of scheduler
    interval=400,  # The interval to update the learning rate
    by_epoch=False,  # The scheduler is called by iteration
    start_factor=0.0002,  # The number we multiply parameter value in the first iteration
    end_factor=0,  # The number we multiply parameter value at the end of linear changing process.
    begin=40000,  # The start iteration of the scheduler
    end=80000)  # The end iteration of the scheduler








Hook config

Users can attach hooks to training, validation, and testing loops to insert some operations during running. There are two different hook fields, one is default_hooks and the other is custom_hooks.

default_hooks is a dict of hook configs. default_hooks are the hooks must required at runtime. They have default priority which should not be modified. If not set, runner will use the default values. To disable a default hook, users can set its config to None.

default_hooks = dict(
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=100, log_metric_by_epoch=False),
    checkpoint=dict(
        type='CheckpointHook',
        interval=10000,
        by_epoch=False,
        less_keys=['FID-Full-50k/fid'],
        greater_keys=['IS-50k/is'],
        save_optimizer=True,
        save_best='FID-Full-50k/fid'))





custom_hooks is a list of hook configs. Users can develop there own hooks and insert them in this field.

custom_hooks = [
    dict(
        type='VisualizationHook',
        interval=5000,
        fixed_input=True,
        vis_kwargs_list=dict(type='GAN', name='fake_img'))
]








Runtime config

default_scope = 'mmagic'  # The default registry scope to find modules. Refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/registry.html

# config for environment
env_cfg = dict(
    cudnn_benchmark=True,  # whether to enable cudnn benchmark.
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),  # set multi process parameters.
    dist_cfg=dict(backend='nccl'),  # set distributed parameters.
)

log_level = 'INFO'  # The level of logging
log_processor = dict(
    type='LogProcessor',  # log processor to process runtime logs
    by_epoch=False)  # print log by iteration
load_from = None  # load model checkpoint as a pre-trained model for a given path
resume = False  # Whether to resume from the checkpoint define in `load_from`. If `load_from` is `None`, it will resume the latest checkpoint in `work_dir`










Other examples


An example of config system for inpainting

To help the users have a basic idea of a complete config and the modules in a inpainting system,
we make brief comments on the config of Global&Local as the following.
For more detailed usage and the corresponding alternative for each modules, please refer to the API documentation.

model = dict(
    type='GLInpaintor', # The name of inpaintor
    data_preprocessor=dict(
        type='DataPreprocessor', # The name of data preprocessor
        mean=[127.5], # Mean value used in data normalization
        std=[127.5], # Std value used in data normalization
    ),
    encdec=dict(
        type='GLEncoderDecoder', # The name of encoder-decoder
        encoder=dict(type='GLEncoder', norm_cfg=dict(type='SyncBN')), # The config of encoder
        decoder=dict(type='GLDecoder', norm_cfg=dict(type='SyncBN')), # The config of decoder
        dilation_neck=dict(
            type='GLDilationNeck', norm_cfg=dict(type='SyncBN'))), # The config of dilation neck
    disc=dict(
        type='GLDiscs', # The name of discriminator
        global_disc_cfg=dict(
            in_channels=3, # The input channel of discriminator
            max_channels=512, # The maximum middle channel in discriminator
            fc_in_channels=512 * 4 * 4, # The input channel of last fc layer
            fc_out_channels=1024, # The output channel of last fc channel
            num_convs=6, # The number of convs used in discriminator
            norm_cfg=dict(type='SyncBN') # The config of norm layer
        ),
        local_disc_cfg=dict(
            in_channels=3, # The input channel of discriminator
            max_channels=512, # The maximum middle channel in discriminator
            fc_in_channels=512 * 4 * 4, # The input channel of last fc layer
            fc_out_channels=1024, # The output channel of last fc channel
            num_convs=5, # The number of convs used in discriminator
            norm_cfg=dict(type='SyncBN') # The config of norm layer
        ),
    ),
    loss_gan=dict(
        type='GANLoss', # The name of GAN loss
        gan_type='vanilla', # The type of GAN loss
        loss_weight=0.001 # The weight of GAN loss
    ),
    loss_l1_hole=dict(
        type='L1Loss', # The type of l1 loss
        loss_weight=1.0 # The weight of l1 loss
    ))

train_cfg = dict(
    type='IterBasedTrainLoop',# The name of train loop type
    max_iters=500002, # The number of total iterations
    val_interval=50000, # The number of validation interval iterations
)
val_cfg = dict(type='ValLoop') # The name of validation loop type
test_cfg = dict(type='TestLoop') # The name of test loop type

val_evaluator = [
    dict(type='MAE', mask_key='mask', scaling=100), # The name of metrics to evaluate
    dict(type='PSNR'), # The name of metrics to evaluate
    dict(type='SSIM'), # The name of metrics to evaluate
]
test_evaluator = val_evaluator

input_shape = (256, 256) # The shape of input image

train_pipeline = [
    dict(type='LoadImageFromFile', key='gt'), # The config of loading image
    dict(
        type='LoadMask', # The type of loading mask pipeline
        mask_mode='bbox', # The type of mask
        mask_config=dict(
            max_bbox_shape=(128, 128), # The shape of bbox
            max_bbox_delta=40, # The changing delta of bbox height and width
            min_margin=20,  # The minimum margin from bbox to the image border
            img_shape=input_shape)),  # The input image shape
    dict(
        type='Crop', # The type of crop pipeline
        keys=['gt'],  # The keys of images to be cropped
        crop_size=(384, 384),  # The size of cropped patch
        random_crop=True,  # Whether to use random crop
    ),
    dict(
        type='Resize',  # The type of resizing pipeline
        keys=['gt'],  # They keys of images to be resized
        scale=input_shape,  # The scale of resizing function
        keep_ratio=False,  # Whether to keep ratio during resizing
    ),
    dict(
        type='Normalize',  # The type of normalizing pipeline
        keys=['gt_img'],  # The keys of images to be normed
        mean=[127.5] * 3,  # Mean value used in normalization
        std=[127.5] * 3,  # Std value used in normalization
        to_rgb=False),  # Whether to transfer image channels to rgb
    dict(type='GetMaskedImage'), # The config of getting masked image pipeline
    dict(type='PackInputs'), # The config of collecting data from the current pipeline
]

test_pipeline = train_pipeline  # Constructing testing/validation pipeline

dataset_type = 'BasicImageDataset' # The type of dataset
data_root = 'data/places'  # Root path of data

train_dataloader = dict(
    batch_size=12, # Batch size of a single GPU
    num_workers=4, # The number of workers to pre-fetch data for each single GPU
    persistent_workers=False, # Whether maintain the workers Dataset instances alive
    sampler=dict(type='InfiniteSampler', shuffle=False), # The type of data sampler
    dataset=dict(  # Train dataset config
        type=dataset_type, # Type of dataset
        data_root=data_root, # Root path of data
        data_prefix=dict(gt='data_large'), # Prefix of image path
        ann_file='meta/places365_train_challenge.txt', # Path of annotation file
        test_mode=False,
        pipeline=train_pipeline,
    ))

val_dataloader = dict(
    batch_size=1, # Batch size of a single GPU
    num_workers=4, # The number of workers to pre-fetch data for each single GPU
    persistent_workers=False, # Whether maintain the workers Dataset instances alive
    drop_last=False, # Whether drop the last incomplete batch
    sampler=dict(type='DefaultSampler', shuffle=False), # The type of data sampler
    dataset=dict( # Validation dataset config
        type=dataset_type, # Type of dataset
        data_root=data_root, # Root path of data
        data_prefix=dict(gt='val_large'), # Prefix of image path
        ann_file='meta/places365_val.txt', # Path of annotation file
        test_mode=True,
        pipeline=test_pipeline,
    ))

test_dataloader = val_dataloader

model_wrapper_cfg = dict(type='MMSeparateDistributedDataParallel') # The name of model wrapper

optim_wrapper = dict( # Config used to build optimizer, support all the optimizers in PyTorch whose arguments are also the same as those in PyTorch
    constructor='MultiOptimWrapperConstructor',
    generator=dict(
        type='OptimWrapper', optimizer=dict(type='Adam', lr=0.0004)),
    disc=dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=0.0004)))

default_scope = 'mmagic' # Used to set registries location
save_dir = './work_dirs' # Directory to save the model checkpoints and logs for the current experiments
exp_name = 'gl_places'  # The experiment name

default_hooks = dict( # Used to build default hooks
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=100), # Config to register logger hook
    param_scheduler=dict(type='ParamSchedulerHook'),
    checkpoint=dict( # Config to set the checkpoint hook
        type='CheckpointHook',
        interval=50000,
        by_epoch=False,
        out_dir=save_dir),
    sampler_seed=dict(type='DistSamplerSeedHook'),
)

env_cfg = dict( # Parameters to setup distributed training, the port can also be set
    cudnn_benchmark=False,
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    dist_cfg=dict(backend='nccl'),
)

vis_backends = [dict(type='LocalVisBackend')] # The name of visualization backend
visualizer = dict( # Config used to build visualizer
    type='ConcatImageVisualizer',
    vis_backends=vis_backends,
    fn_key='gt_path',
    img_keys=['gt_img', 'input', 'pred_img'],
    bgr2rgb=True)
custom_hooks = [dict(type='BasicVisualizationHook', interval=1)] # Used to build custom hooks

log_level = 'INFO' # The level of logging
log_processor = dict(type='LogProcessor', by_epoch=False) # Used to build log processor

load_from = None # load models as a pre-trained model from a given path. This will not resume training.
resume = False # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved.

find_unused_parameters = False  # Whether to set find unused parameters in ddp








An example of config system for matting

To help the users have a basic idea of a complete config, we make a brief comments on the config of the original DIM model we implemented as the following. For more detailed usage and the corresponding alternative for each modules, please refer to the API documentation.

# model settings
model = dict(
    type='DIM',  # The name of model (we call mattor).
    data_preprocessor=dict(  # The Config to build data preprocessor
        type='DataPreprocessor',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        bgr_to_rgb=True,
        proc_inputs='normalize',
        proc_trimap='rescale_to_zero_one',
        proc_gt='rescale_to_zero_one',
    ),
    backbone=dict(  # The config of the backbone.
        type='SimpleEncoderDecoder',  # The type of the backbone.
        encoder=dict(  # The config of the encoder.
            type='VGG16'),  # The type of the encoder.
        decoder=dict(  # The config of the decoder.
            type='PlainDecoder')),  # The type of the decoder.
    pretrained='./weights/vgg_state_dict.pth',  # The pretrained weight of the encoder to be loaded.
    loss_alpha=dict(  # The config of the alpha loss.
        type='CharbonnierLoss',  # The type of the loss for predicted alpha matte.
        loss_weight=0.5),  # The weight of the alpha loss.
    loss_comp=dict(  # The config of the composition loss.
        type='CharbonnierCompLoss',  # The type of the composition loss.
        loss_weight=0.5), # The weight of the composition loss.
    train_cfg=dict(  # Config of training DIM model.
        train_backbone=True,  # In DIM stage1, backbone is trained.
        train_refiner=False),  # In DIM stage1, refiner is not trained.
    test_cfg=dict(  # Config of testing DIM model.
        refine=False,  # Whether use refiner output as output, in stage1, we don't use it.
        resize_method='pad',
        resize_mode='reflect',
        size_divisor=32,
    ),
)

# data settings
dataset_type = 'AdobeComp1kDataset'  # Dataset type, this will be used to define the dataset.
data_root = 'data/adobe_composition-1k'  # Root path of data.

train_pipeline = [  # Training data processing pipeline.
    dict(
        type='LoadImageFromFile',  # Load alpha matte from file.
        key='alpha',  # Key of alpha matte in annotation file. The pipeline will read alpha matte from path `alpha_path`.
        color_type='grayscale'),  # Load as grayscale image which has shape (height, width).
    dict(
        type='LoadImageFromFile',  # Load image from file.
        key='fg'),  # Key of image to load. The pipeline will read fg from path `fg_path`.
    dict(
        type='LoadImageFromFile',  # Load image from file.
        key='bg'),  # Key of image to load. The pipeline will read bg from path `bg_path`.
    dict(
        type='LoadImageFromFile',  # Load image from file.
        key='merged'),  # Key of image to load. The pipeline will read merged from path `merged_path`.
    dict(
        type='CropAroundUnknown',  # Crop images around unknown area (semi-transparent area).
        keys=['alpha', 'merged', 'fg', 'bg'],  # Images to crop.
        crop_sizes=[320, 480, 640]),  # Candidate crop size.
    dict(
        type='Flip',  # Augmentation pipeline that flips the images.
        keys=['alpha', 'merged', 'fg', 'bg']),  # Images to be flipped.
    dict(
        type='Resize',  # Augmentation pipeline that resizes the images.
        keys=['alpha', 'merged', 'fg', 'bg'],  # Images to be resized.
        scale=(320, 320),  # Target size.
        keep_ratio=False),  # Whether to keep the ratio between height and width.
    dict(
        type='GenerateTrimap',  # Generate trimap from alpha matte.
        kernel_size=(1, 30)),  # Kernel size range of the erode/dilate kernel.
    dict(type='PackInputs'),  # The config of collecting data from the current pipeline
]
test_pipeline = [
    dict(
        type='LoadImageFromFile',  # Load alpha matte.
        key='alpha',  # Key of alpha matte in annotation file. The pipeline will read alpha matte from path `alpha_path`.
        color_type='grayscale',
        save_original_img=True),
    dict(
        type='LoadImageFromFile',  # Load image from file
        key='trimap',  # Key of image to load. The pipeline will read trimap from path `trimap_path`.
        color_type='grayscale',  # Load as grayscale image which has shape (height, width).
        save_original_img=True),  # Save a copy of trimap for calculating metrics. It will be saved with key `ori_trimap`
    dict(
        type='LoadImageFromFile',  # Load image from file
        key='merged'),  # Key of image to load. The pipeline will read merged from path `merged_path`.
    dict(type='PackInputs'),  # The config of collecting data from the current pipeline
]

train_dataloader = dict(
    batch_size=1,  # Batch size of a single GPU
    num_workers=4,  # The number of workers to pre-fetch data for each single GPU
    persistent_workers=False,  # Whether maintain the workers Dataset instances alive
    sampler=dict(type='InfiniteSampler', shuffle=True),  # The type of data sampler
    dataset=dict(  # Train dataset config
        type=dataset_type,  # Type of dataset
        data_root=data_root,  # Root path of data
        ann_file='training_list.json',  # Path of annotation file
        test_mode=False,
        pipeline=train_pipeline,
    ))

val_dataloader = dict(
    batch_size=1,  # Batch size of a single GPU
    num_workers=4,  # The number of workers to pre-fetch data for each single GPU
    persistent_workers=False,  # Whether maintain the workers Dataset instances alive
    drop_last=False,  # Whether drop the last incomplete batch
    sampler=dict(type='DefaultSampler', shuffle=False),  # The type of data sampler
    dataset=dict(  # Validation dataset config
        type=dataset_type,  # Type of dataset
        data_root=data_root,  # Root path of data
        ann_file='test_list.json',  # Path of annotation file
        test_mode=True,
        pipeline=test_pipeline,
    ))

test_dataloader = val_dataloader

val_evaluator = [
    dict(type='SAD'),  # The name of metrics to evaluate
    dict(type='MattingMSE'),  # The name of metrics to evaluate
    dict(type='GradientError'),  # The name of metrics to evaluate
    dict(type='ConnectivityError'),  # The name of metrics to evaluate
]
test_evaluator = val_evaluator

train_cfg = dict(
    type='IterBasedTrainLoop',  # The name of train loop type
    max_iters=1_000_000,  # The number of total iterations
    val_interval=40000,  # The number of validation interval iterations
)
val_cfg = dict(type='ValLoop')  # The name of validation loop type
test_cfg = dict(type='TestLoop')  # The name of test loop type

# optimizer
optim_wrapper = dict(
    dict(
        type='OptimWrapper',
        optimizer=dict(type='Adam', lr=0.00001),
    )
)  # Config used to build optimizer, support all the optimizers in PyTorch whose arguments are also the same as those in PyTorch.

default_scope = 'mmagic'  # Used to set registries location
save_dir = './work_dirs'  # Directory to save the model checkpoints and logs for the current experiments.

default_hooks = dict(  # Used to build default hooks
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=100),  # Config to register logger hook
    param_scheduler=dict(type='ParamSchedulerHook'),
    checkpoint=dict(  # Config to set the checkpoint hook
        type='CheckpointHook',
        interval=40000,  # The save interval is 40000 iterations.
        by_epoch=False,  # Count by iterations.
        out_dir=save_dir),
    sampler_seed=dict(type='DistSamplerSeedHook'),
)

env_cfg = dict(  # Parameters to setup distributed training, the port can also be set
    cudnn_benchmark=False,
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=4),
    dist_cfg=dict(backend='nccl'),
)

log_level = 'INFO'  # The level of logging
log_processor = dict(type='LogProcessor', by_epoch=False)  # Used to build log processor

load_from = None  # load models as a pre-trained model from a given path. This will not resume training.
resume = False  # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved.








An example of config system for restoration

To help the users have a basic idea of a complete config, we make a brief comments on the config of the EDSR model we implemented as the following. For more detailed usage and the corresponding alternative for each modules, please refer to the API documentation.

exp_name = 'edsr_x2c64b16_1x16_300k_div2k'  # The experiment name
work_dir = f'./work_dirs/{experiment_name}'
save_dir = './work_dirs/'

load_from = None  # based on pre-trained x2 model

scale = 2  # Scale factor for upsampling
# model settings
model = dict(
    type='BaseEditModel',  # Name of the model
    generator=dict(  # Config of the generator
        type='EDSRNet',  # Type of the generator
        in_channels=3,  # Channel number of inputs
        out_channels=3,  # Channel number of outputs
        mid_channels=64,  # Channel number of intermediate features
        num_blocks=16,  # Block number in the trunk network
        upscale_factor=scale, # Upsampling factor
        res_scale=1,  # Used to scale the residual in residual block
        rgb_mean=(0.4488, 0.4371, 0.4040),  # Image mean in RGB orders
        rgb_std=(1.0, 1.0, 1.0)),  # Image std in RGB orders
    pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean')  # Config for pixel loss
    train_cfg=dict(),  # Config of training model.
    test_cfg=dict(),  # Config of testing model.
    data_preprocessor=dict(  # The Config to build data preprocessor
        type='DataPreprocessor', mean=[0., 0., 0.], std=[255., 255.,
                                                             255.]))

train_pipeline = [  # Training data processing pipeline
    dict(type='LoadImageFromFile',  # Load images from files
        key='img',  # Keys in results to find corresponding path
        color_type='color',  # Color type of image
        channel_order='rgb',  # Channel order of image
        imdecode_backend='cv2'),  # decode backend
    dict(type='LoadImageFromFile',  # Load images from files
        key='gt',  # Keys in results to find corresponding path
        color_type='color',  # Color type of image
        channel_order='rgb',  # Channel order of image
        imdecode_backend='cv2'),  # decode backend
    dict(type='SetValues', dictionary=dict(scale=scale)),  # Set value to destination keys
    dict(type='PairedRandomCrop', gt_patch_size=96),  # Paired random crop
    dict(type='Flip',  # Flip images
        keys=['lq', 'gt'],  # Images to be flipped
        flip_ratio=0.5,  # Flip ratio
        direction='horizontal'),  # Flip direction
    dict(type='Flip',  # Flip images
        keys=['lq', 'gt'],  # Images to be flipped
        flip_ratio=0.5,  # Flip ratio
        direction='vertical'),  # Flip direction
    dict(type='RandomTransposeHW',  # Random transpose h and w for images
        keys=['lq', 'gt'],  # Images to be transposed
        transpose_ratio=0.5  # Transpose ratio
        ),
    dict(type='PackInputs')  # The config of collecting data from the current pipeline
]
test_pipeline = [  # Test pipeline
    dict(type='LoadImageFromFile',  # Load images from files
        key='img',  # Keys in results to find corresponding path
        color_type='color',  # Color type of image
        channel_order='rgb',  # Channel order of image
        imdecode_backend='cv2'),  # decode backend
    dict(type='LoadImageFromFile',  # Load images from files
        key='gt',  # Keys in results to find corresponding path
        color_type='color',  # Color type of image
        channel_order='rgb',  # Channel order of image
        imdecode_backend='cv2'),  # decode backend
    dict(type='ToTensor', keys=['img', 'gt']),  # Convert images to tensor
    dict(type='PackInputs')  # The config of collecting data from the current pipeline
]

# dataset settings
dataset_type = 'BasicImageDataset'  # The type of dataset
data_root = 'data'  # Root path of data

train_dataloader = dict(
    num_workers=4,  # The number of workers to pre-fetch data for each single GPU
    persistent_workers=False,  # Whether maintain the workers Dataset instances alive
    sampler=dict(type='InfiniteSampler', shuffle=True),  # The type of data sampler
    dataset=dict(  # Train dataset config
        type=dataset_type,  # Type of dataset
        ann_file='meta_info_DIV2K800sub_GT.txt',  # Path of annotation file
        metainfo=dict(dataset_type='div2k', task_name='sisr'),
        data_root=data_root + '/DIV2K',  # Root path of data
        data_prefix=dict(  # Prefix of image path
            img='DIV2K_train_LR_bicubic/X2_sub', gt='DIV2K_train_HR_sub'),
        filename_tmpl=dict(img='{}', gt='{}'),  # Filename template
        pipeline=train_pipeline))
val_dataloader = dict(
    num_workers=4,  # The number of workers to pre-fetch data for each single GPU
    persistent_workers=False,  # Whether maintain the workers Dataset instances alive
    drop_last=False,  # Whether drop the last incomplete batch
    sampler=dict(type='DefaultSampler', shuffle=False),  # The type of data sampler
    dataset=dict(  # Validation dataset config
        type=dataset_type,  # Type of dataset
        metainfo=dict(dataset_type='set5', task_name='sisr'),
        data_root=data_root + '/Set5',  # Root path of data
        data_prefix=dict(img='LRbicx2', gt='GTmod12'),  # Prefix of image path
        pipeline=test_pipeline))
test_dataloader = val_dataloader

val_evaluator = [
    dict(type='MAE'),  # The name of metrics to evaluate
    dict(type='PSNR', crop_border=scale),  # The name of metrics to evaluate
    dict(type='SSIM', crop_border=scale),  # The name of metrics to evaluate
]
test_evaluator = val_evaluator

train_cfg = dict(
    type='IterBasedTrainLoop', max_iters=300000, val_interval=5000)  # Config of train loop type
val_cfg = dict(type='ValLoop')  # The name of validation loop type
test_cfg = dict(type='TestLoop')  # The name of test loop type

# optimizer
optim_wrapper = dict(
    dict(
        type='OptimWrapper',
        optimizer=dict(type='Adam', lr=0.00001),
    )
)  # Config used to build optimizer, support all the optimizers in PyTorch whose arguments are also the same as those in PyTorch.

param_scheduler = dict(  # Config of learning policy
    type='MultiStepLR', by_epoch=False, milestones=[200000], gamma=0.5)

default_hooks = dict(  # Used to build default hooks
    checkpoint=dict(  # Config to set the checkpoint hook
        type='CheckpointHook',
        interval=5000,  # The save interval is 5000 iterations
        save_optimizer=True,
        by_epoch=False,  # Count by iterations
        out_dir=save_dir,
    ),
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=100),  # Config to register logger hook
    param_scheduler=dict(type='ParamSchedulerHook'),
    sampler_seed=dict(type='DistSamplerSeedHook'),
)

default_scope = 'mmagic'  # Used to set registries location
save_dir = './work_dirs'  # Directory to save the model checkpoints and logs for the current experiments.

env_cfg = dict(  # Parameters to setup distributed training, the port can also be set
    cudnn_benchmark=False,
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=4),
    dist_cfg=dict(backend='nccl'),
)

log_level = 'INFO'  # The level of logging
log_processor = dict(type='LogProcessor', window_size=100, by_epoch=False)  # Used to build log processor

load_from = None  # load models as a pre-trained model from a given path. This will not resume training.
resume = False  # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved.
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Tutorial 2: Prepare datasets

In this section, we will detail how to prepare data and adopt the proper dataset in our repo for different methods.

We support multiple datasets of different tasks.
There are two ways to use datasets for training and testing models in MMagic:


	Using downloaded datasets directly


	Preprocessing downloaded datasets before using them.




The structure of this guide is as follows:


	Tutorial 2: Prepare datasets


	Download datasets


	Prepare datasets


	The overview of the datasets in MMagic









Download datasets

You are supposed to download datasets from their homepage first.
Most datasets are available after downloaded, so you only need to make sure the folder structure is correct and further preparation is not necessary.
For example, you can simply prepare Vimeo90K-triplet datasets by downloading datasets from homepage [http://toflow.csail.mit.edu/].




Prepare datasets

Some datasets need to be preprocessed before training or testing. We support many scripts to prepare datasets in tools/dataset_converters [https://github.com/open-mmlab/mmagic/tree/main/tools/dataset_converters]. And you can follow the tutorials of every dataset to run scripts.
For example, we recommend cropping the DIV2K images to sub-images. We provide a script to prepare cropped DIV2K dataset. You can run the following command:

python tools/dataset_converters/div2k/preprocess_div2k_dataset.py --data-root ./data/DIV2K








The overview of the datasets in MMagic

We support detailed tutorials and split them according to different tasks.

Please check our dataset zoo for data preparation of different tasks.

If you’re interested in more details of datasets in MMagic, please check the advanced guides.
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Tutorial 3: Inference with pre-trained models

MMagic provides Hign-level APIs for you to easily play with state-of-the-art models on your own images or videos.

In the new API, only two lines of code are needed to implement inference:

from mmagic.apis import MMagicInferencer

# Create a MMagicInferencer instance
editor = MMagicInferencer('pix2pix')
# Infer a image. Input image path and output image path is needed.
results = editor.infer(img='../resources/input/translation/gt_mask_0.png', result_out_dir='../resources/output/translation/tutorial_translation_pix2pix_res.jpg')





MMagic supports various fundamental generative models, including:

unconditional Generative Adversarial Networks (GANs), conditional GANs, diffusion models, etc.

MMagic also supports various applications, including:

text-to-image, image-to-image translation, 3D-aware generation, image super-resolution, video super-resolution, video frame interpolation, image inpainting, image matting, image restoration, image colorization, image generation, etc.

In this section, we will specify how to play with our pre-trained models.


	Tutorial 3: Inference with Pre-trained Models


	Prepare some images or videos for inference


	Generative Models


	Unconditional Generative Adversarial Networks (GANs)


	Conditional Generative Adversarial Networks (GANs)


	Diffusion Models






	Applications


	Text-to-Image


	Image-to-image translation


	3D-aware generation


	Image super-resolution


	Video super-resolution


	Video frame interpolation


	Image inpainting


	Image matting


	Image restoration


	Image colorization










	Previous Versions





Prepare some images or videos for inference

Please refer to our tutorials [https://github.com/open-mmlab/mmagic/blob/main/demo/mmagic_inference_tutorial.ipynb] for details.




Generative Models


Unconditional Generative Adversarial Networks (GANs)

MMagic provides high-level APIs for sampling images with unconditional GANs. Unconditional GAN models do not need input, and output a image. We take ‘styleganv1’ as an example.

import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer

# Create a MMagicInferencer instance and infer
result_out_dir = './resources/output/unconditional/tutorial_unconditional_styleganv1_res.png'
editor = MMagicInferencer('styleganv1')
results = editor.infer(result_out_dir=result_out_dir)





Indeed, we have already provided a more friendly demo script to users. You can use demo/mmagic_inference_demo.py with the following commands:

python demo/mmagic_inference_demo.py \
        --model-name styleganv1 \
        --result-out-dir demo_unconditional_styleganv1_res.jpg








Conditional Generative Adversarial Networks (GANs)

MMagic provides high-level APIs for sampling images with conditional GANs. Conditional GAN models take a label as input and output a image. We take ‘biggan’ as an example..

import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer

# Create a MMagicInferencer instance and infer
result_out_dir = './resources/output/conditional/tutorial_conditinal_biggan_res.jpg'
editor = MMagicInferencer('biggan', model_setting=1)
results = editor.infer(label=1, result_out_dir=result_out_dir)





Indeed, we have already provided a more friendly demo script to users. You can use demo/mmagic_inference_demo.py with the following commands:

python demo/mmagic_inference_demo.py \
        --model-name biggan \
        --model-setting 1 \
        --label 1 \
        --result-out-dir demo_conditional_biggan_res.jpg








Diffusion Models

MMagic provides high-level APIs for sampling images with diffusion models. f

import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer

# Create a MMagicInferencer instance and infer
editor = MMagicInferencer(model_name='stable_diffusion')
text_prompts = 'A panda is having dinner at KFC'
result_out_dir = './resources/output/text2image/tutorial_text2image_sd_res.png'
editor.infer(text=text_prompts, result_out_dir=result_out_dir)





Use demo/mmagic_inference_demo.py with the following commands:

python demo/mmagic_inference_demo.py \
        --model-name stable_diffusion \
        --text "A panda is having dinner at KFC" \
        --result-out-dir demo_text2image_stable_diffusion_res.png










Applications


Text-to-Image

Text-to-image models take text as input, and output a image. We take ‘controlnet-canny’ as an example.

import cv2
import numpy as np
import mmcv
from mmengine import Config
from PIL import Image

from mmagic.registry import MODELS
from mmagic.utils import register_all_modules

register_all_modules()

cfg = Config.fromfile('configs/controlnet/controlnet-canny.py')
controlnet = MODELS.build(cfg.model).cuda()

control_url = 'https://user-images.githubusercontent.com/28132635/230288866-99603172-04cb-47b3-8adb-d1aa532d1d2c.jpg'
control_img = mmcv.imread(control_url)
control = cv2.Canny(control_img, 100, 200)
control = control[:, :, None]
control = np.concatenate([control] * 3, axis=2)
control = Image.fromarray(control)

prompt = 'Room with blue walls and a yellow ceiling.'

output_dict = controlnet.infer(prompt, control=control)
samples = output_dict['samples']





Use demo/mmagic_inference_demo.py with the following commands:

python demo/mmagic_inference_demo.py \
        --model-name controlnet \
        --model-setting 1 \
        --text "Room with blue walls and a yellow ceiling." \
        --control 'https://user-images.githubusercontent.com/28132635/230297033-4f5c32df-365c-4cf4-8e4f-1b76a4cbb0b7.png' \
        --result-out-dir demo_text2image_controlnet_canny_res.png








Image-to-image translation

MMagic provides high-level APIs for translating images by using image translation models. Here is an example of building Pix2Pix and obtaining the translated images.

import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer

# Create a MMagicInferencer instance and infer
editor = MMagicInferencer('pix2pix')
results = editor.infer(img=img_path, result_out_dir=result_out_dir)





Use demo/mmagic_inference_demo.py with the following commands:

python demo/mmagic_inference_demo.py \
        --model-name pix2pix \
        --img ${IMAGE_PATH} \
        --result-out-dir ${SAVE_PATH}








3D-aware generation

import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer

# Create a MMagicInferencer instance and infer
result_out_dir = './resources/output/eg3d-output'
editor = MMagicInferencer('eg3d')
results = editor.infer(result_out_dir=result_out_dir)





Use demo/mmagic_inference_demo.py with the following commands:

python demo/mmagic_inference_demo.py \
    --model-name eg3d \
    --result-out-dir ./resources/output/eg3d-output








Image super-resolution

Image super resolution models take a image as input, and output a high resolution image. We take ‘esrgan’ as an example.

import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer

# Create a MMagicInferencer instance and infer
img = './resources/input/restoration/0901x2.png'
result_out_dir = './resources/output/restoration/tutorial_restoration_esrgan_res.png'
editor = MMagicInferencer('esrgan')
results = editor.infer(img=img, result_out_dir=result_out_dir)





Use demo/mmagic_inference_demo.py with the following commands:

python demo/mmagic_inference_demo.py \
        --model-name esrgan \
        --img ${IMAGE_PATH} \
        --result-out-dir ${SAVE_PATH}








Video super-resolution

import os
from mmagic.apis import MMagicInferencer
from mmengine import mkdir_or_exist

# Create a MMagicInferencer instance and infer
video = './resources/input/video_interpolation/b-3LLDhc4EU_000000_000010.mp4'
result_out_dir = './resources/output/video_super_resolution/tutorial_video_super_resolution_basicvsr_res.mp4'
mkdir_or_exist(os.path.dirname(result_out_dir))
editor = MMagicInferencer('basicvsr')
results = editor.infer(video=video, result_out_dir=result_out_dir)





Use demo/mmagic_inference_demo.py with the following commands:

python demo/mmagic_inference_demo.py \
        --model-name basicvsr \
        --video ./resources/input/video_restoration/QUuC4vJs_000084_000094_400x320.mp4 \
        --result-out-dir ./resources/output/video_restoration/demo_video_restoration_basicvsr_res.mp4








Video frame interpolation

Video interpolation models take a video as input, and output a interpolated video. We take ‘flavr’ as an example.

import os
from mmagic.apis import MMagicInferencer
from mmengine import mkdir_or_exist

# Create a MMagicInferencer instance and infer
video = './resources/input/video_interpolation/b-3LLDhc4EU_000000_000010.mp4'
result_out_dir = './resources/output/video_interpolation/tutorial_video_interpolation_flavr_res.mp4'
mkdir_or_exist(os.path.dirname(result_out_dir))
editor = MMagicInferencer('flavr')
results = editor.infer(video=video, result_out_dir=result_out_dir)





Use demo/mmagic_inference_demo.py with the following commands:

python demo/mmagic_inference_demo.py \
        --model-name flavr \
        --video ${VIDEO_PATH} \
        --result-out-dir ${SAVE_PATH}








Image inpainting

Inpaiting models take a masked image and mask pair as input, and output a inpainted image. We take ‘global_local’ as an example.

import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer

img = './resources/input/inpainting/celeba_test.png'
mask = './resources/input/inpainting/bbox_mask.png'

# Create a MMagicInferencer instance and infer
result_out_dir = './resources/output/inpainting/tutorial_inpainting_global_local_res.jpg'
editor = MMagicInferencer('global_local', model_setting=1)
results = editor.infer(img=img, mask=mask, result_out_dir=result_out_dir)





Use demo/mmagic_inference_demo.py with the following commands:

python demo/mmagic_inference_demo.py \
        --model-name global_local  \
        --img ./resources/input/inpainting/celeba_test.png \
        --mask ./resources/input/inpainting/bbox_mask.png \
        --result-out-dir ./resources/output/inpainting/demo_inpainting_global_local_res.jpg








Image matting

Inpaiting models take a image and trimap pair as input, and output a alpha image. We take ‘gca’ as an example.

import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer

img = './resources/input/matting/GT05.jpg'
trimap = './resources/input/matting/GT05_trimap.jpg'

# Create a MMagicInferencer instance and infer
result_out_dir = './resources/output/matting/tutorial_matting_gca_res.png'
editor = MMagicInferencer('gca')
results = editor.infer(img=img, trimap=trimap, result_out_dir=result_out_dir)





Use demo/mmagic_inference_demo.py with the following commands:

python demo/mmagic_inference_demo.py \
        --model-name gca  \
        --img ./resources/input/matting/GT05.jpg \
        --trimap ./resources/input/matting/GT05_trimap.jpg \
        --result-out-dir ./resources/output/matting/demo_matting_gca_res.png








Image restoration

import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer

# Create a MMagicInferencer instance and infer
img = './resources/input/restoration/0901x2.png'
result_out_dir = './resources/output/restoration/tutorial_restoration_nafnet_res.png'
editor = MMagicInferencer('nafnet')
results = editor.infer(img=img, result_out_dir=result_out_dir)





python demo/mmagic_inference_demo.py \
        --model-name nafnet \
        --img ./resources/input/restoration/0901x2.png \
        --result-out-dir ./resources/output/restoration/demo_restoration_nafnet_res.png








Image colorization

import mmcv
import matplotlib.pyplot as plt
from mmagic.apis import MMagicInferencer

# Create a MMagicInferencer instance and infer
img = 'https://github-production-user-asset-6210df.s3.amazonaws.com/49083766/245713512-de973677-2be8-4915-911f-fab90bb17c40.jpg'
result_out_dir = './resources/output/colorization/tutorial_colorization_res.png'
editor = MMagicInferencer('inst_colorization')
results = editor.infer(img=img, result_out_dir=result_out_dir)





python demo/mmagic_inference_demo.py \
        --model-name inst_colorization \
        --img https://github-production-user-asset-6210df.s3.amazonaws.com/49083766/245713512-de973677-2be8-4915-911f-fab90bb17c40.jpg \
        --result-out-dir demo_colorization_res.png










Previous Versions

If you want to use deprecated demos, please use MMagic v1.0.0rc7 [https://github.com/open-mmlab/mmagic/tree/v1.0.0rc7] and reference the old tutorial [https://github.com/open-mmlab/mmagic/blob/v1.0.0rc7/docs/en/user_guides/inference.md].
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Tutorial 4: Train and test in MMagic

In this section, we introduce how to test and train models in MMagic.

In this section, we provide the following guides:


	Tutorial 4: Train and test in MMagic


	Prerequisite


	Test a model in MMagic


	Test with a single GPUs


	Test with multiple GPUs


	Test with Slurm


	Test with specific metrics






	Train a model in MMagic


	Train with a single GPU


	Train with multiple nodes


	Train with multiple GPUs


	Train with Slurm


	Optional arguments






	Train with specific evaluation metrics









Prerequisite

Users need to prepare dataset first to enable training and testing models in MMagic.




Test a model in MMagic


Test with a single GPUs

You can use the following commands to test a pre-trained model with single GPUs.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}





For example,

python tools/test.py configs/example_config.py work_dirs/example_exp/example_model_20200202.pth








Test with multiple GPUs

MMagic supports testing with multiple GPUs,
which can largely save your time in testing models.
You can use the following commands to test a pre-trained model with multiple GPUs.

./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM}





For example,

./tools/dist_test.sh configs/example_config.py work_dirs/example_exp/example_model_20200202.pth








Test with Slurm

If you run MMagic on a cluster managed with slurm [https://slurm.schedmd.com/], you can use the script slurm_test.sh. (This script also supports single machine testing.)

[GPUS=${GPUS}] ./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${CHECKPOINT_FILE}





Here is an example of using 8 GPUs to test an example model on the ‘dev’ partition with the job name ‘test’.

GPUS=8 ./tools/slurm_test.sh dev test configs/example_config.py work_dirs/example_exp/example_model_20200202.pth





You can check slurm_test.sh for full arguments and environment variables.




Test with specific metrics

MMagic provides various evaluation metrics, i.e., MS-SSIM, SWD, IS, FID, Precision&Recall, PPL, Equivarience, TransFID, TransIS, etc.
We have provided unified evaluation scripts in tools/test.py [https://github.com/open-mmlab/mmagic/tree/main/tools/test.py] for all models.
If users want to evaluate their models with some metrics, you can add the metrics into your config file like this:

# at the end of the configs/styleganv2/stylegan2_c2_ffhq_256_b4x8_800k.py
metrics = [
    dict(
        type='FrechetInceptionDistance',
        prefix='FID-Full-50k',
        fake_nums=50000,
        inception_style='StyleGAN',
        sample_model='ema'),
    dict(type='PrecisionAndRecall', fake_nums=50000, prefix='PR-50K'),
    dict(type='PerceptualPathLength', fake_nums=50000, prefix='ppl-w')
]





As above, metrics consist of multiple metric dictionaries. Each metric will contain type to indicate the category of the metric. fake_nums denotes the number of images generated by the model. Some metrics will output a dictionary of results, you can also set prefix  to specify the prefix of the results.
If you set the prefix of FID as FID-Full-50k, then an example of output may be

FID-Full-50k/fid: 3.6561  FID-Full-50k/mean: 0.4263  FID-Full-50k/cov: 3.2298





Then users can test models with the command below:

bash tools/dist_test.sh ${CONFIG_FILE} ${CKPT_FILE}





If you are in slurm environment, please switch to the tools/slurm_test.sh [https://github.com/open-mmlab/mmagic/tree/main/tools/slurm_test.sh] by using the following commands:

sh slurm_test.sh ${PLATFORM} ${JOBNAME} ${CONFIG_FILE} ${CKPT_FILE}










Train a model in MMagic

MMagic supports multiple ways of training:


	Train with a single GPU


	Train with multiple GPUs


	Train with multiple nodes


	Train with Slurm




Specifically, all outputs (log files and checkpoints) will be saved to the working directory,
which is specified by work_dir in the config file.


Train with a single GPU

CUDA_VISIBLE=0 python tools/train.py configs/example_config.py --work-dir work_dirs/example








Train with multiple nodes

To launch distributed training on multiple machines, which can be accessed via IPs, run the following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR tools/dist_train.sh $CONFIG $GPUS





On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR tools/dist_train.sh $CONFIG $GPUS





To speed up network communication, high speed network hardware, such as Infiniband, is recommended.
Please refer to PyTorch docs [https://pytorch.org/docs/1.11/distributed.html#launch-utility] for more information.




Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]








Train with Slurm

If you run MMagic on a cluster managed with slurm [https://slurm.schedmd.com/], you can use the script slurm_train.sh. (This script also supports single machine training.)

[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}





Here is an example of using 8 GPUs to train an inpainting model on the dev partition.

GPUS=8 ./tools/slurm_train.sh dev configs/inpainting/gl_places.py /nfs/xxxx/gl_places_256





You can check slurm_train.sh [https://github.com/open-mmlab/mmagic/blob/master/tools/slurm_train.sh] for full arguments and environment variables.




Optional arguments


	--amp: This argument is used for fixed-precision training.


	--resume: This argument is used for auto resume if the training is aborted.









Train with specific evaluation metrics

Benefit from the mmengine’s Runner. We can evaluate model during training in a simple way as below.

# define metrics
metrics = [
    dict(
        type='FrechetInceptionDistance',
        prefix='FID-Full-50k',
        fake_nums=50000,
        inception_style='StyleGAN')
]

# define dataloader
val_dataloader = dict(
    batch_size=128,
    num_workers=8,
    dataset=dict(
        type='BasicImageDataset',
        data_root='data/celeba-cropped/',
        pipeline=[
            dict(type='LoadImageFromFile', key='img'),
            dict(type='Resize', scale=(64, 64)),
            dict(type='PackInputs')
        ]),
    sampler=dict(type='DefaultSampler', shuffle=False),
    persistent_workers=True)

# define val interval
train_cfg = dict(by_epoch=False, val_begin=1, val_interval=10000)

# define val loop and evaluator
val_cfg = dict(type='MultiValLoop')
val_evaluator = dict(type='Evaluator', metrics=metrics)





You can set val_begin and val_interval to adjust when to begin validation and interval of validation.

For details of metrics, refer to metrics’ guide.
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Tutorial 5: Using metrics in MMagic

MMagic supports 17 metrics to assess the quality of models.

Please refer to Train and Test in MMagic for usages.

Here, we will specify the details of different metrics one by one.

The structure of this guide are as follows:


	Tutorial 5: Using metrics in MMagic


	MAE


	MSE


	PSNR


	SNR


	SSIM


	NIQE


	SAD


	MattingMSE


	GradientError


	ConnectivityError


	FID and TransFID


	IS and TransIS


	Precision and Recall


	PPL


	SWD


	MS-SSIM


	Equivarience









MAE

MAE is Mean Absolute Error metric for image.
To evaluate with MAE, please add the following configuration in the config file:

val_evaluator = [
    dict(type='MAE'),
]








MSE

MSE is Mean Squared Error metric for image.
To evaluate with MSE, please add the following configuration in the config file:

val_evaluator = [
    dict(type='MSE'),
]








PSNR

PSNR is Peak Signal-to-Noise Ratio. Our implement refers to https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio.
To evaluate with PSNR, please add the following configuration in the config file:

val_evaluator = [
    dict(type='PSNR'),
]








SNR

SNR is Signal-to-Noise Ratio. Our implementation refers to https://en.wikipedia.org/wiki/Signal-to-noise_ratio.
To evaluate with SNR, please add the following configuration in the config file:

val_evaluator = [
    dict(type='SNR'),
]








SSIM

SSIM is structural similarity for image, proposed in Image quality assessment: from error visibility to structural similarity [https://live.ece.utexas.edu/publications/2004/zwang_ssim_ieeeip2004.pdf]. The results of our implementation are the same as that of the official released MATLAB code in https://ece.uwaterloo.ca/~z70wang/research/ssim/.
To evaluate with SSIM, please add the following configuration in the config file:

val_evaluator = [
    dict(type='SSIM'),
]








NIQE

NIQE is Natural Image Quality Evaluator metric, proposed in Making a “Completely Blind” Image Quality Analyzer [http://www.live.ece.utexas.edu/publications/2013/mittal2013.pdf]. Our implementation could produce almost the same results as the official MATLAB codes: http://live.ece.utexas.edu/research/quality/niqe_release.zip.

To evaluate with NIQE, please add the following configuration in the config file:

val_evaluator = [
    dict(type='NIQE'),
]








SAD

SAD is Sum of Absolute Differences metric for image matting. This metric compute per-pixel absolute difference and sum across all pixels.
To evaluate with SAD, please add the following configuration in the config file:

val_evaluator = [
    dict(type='SAD'),
]








MattingMSE

MattingMSE is Mean Squared Error metric for image matting.
To evaluate with MattingMSE, please add the following configuration in the config file:

val_evaluator = [
    dict(type='MattingMSE'),
]








GradientError

GradientError is Gradient error for evaluating alpha matte prediction.
To evaluate with GradientError, please add the following configuration in the config file:

val_evaluator = [
    dict(type='GradientError'),
]








ConnectivityError

ConnectivityError is Connectivity error for evaluating alpha matte prediction.
To evaluate with ConnectivityError, please add the following configuration in the config file:

val_evaluator = [
    dict(type='ConnectivityError'),
]








FID and TransFID

Fréchet Inception Distance is a measure of similarity between two datasets of images. It was shown to correlate well with the human judgment of visual quality and is most often used to evaluate the quality of samples of Generative Adversarial Networks. FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network.

In MMagic, we provide two versions for FID calculation. One is the commonly used PyTorch version and the other one is used in StyleGAN paper. Meanwhile, we have compared the difference between these two implementations in the StyleGAN2-FFHQ1024 model (the details can be found here [https://github.com/open-mmlab/mmagic/blob/main/configs/styleganv2/README.md]). Fortunately, there is a marginal difference in the final results. Thus, we recommend users adopt the more convenient PyTorch version.

About PyTorch version and Tero’s version: The commonly used PyTorch version adopts the modified InceptionV3 network to extract features for real and fake images. However, Tero’s FID requires a script module [https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/inception-2015-12-05.pt] for Tensorflow InceptionV3. Note that applying this script module needs PyTorch >= 1.6.0.

About extracting real inception data: For the users’ convenience, the real features will be automatically extracted at test time and saved locally, and the stored features will be automatically read at the next test. Specifically, we will calculate a hash value based on the parameters used to calculate the real features, and use the hash value to mark the feature file, and when testing, if the inception_pkl is not set, we will look for the feature in MMAGIC_CACHE_DIR (~/.cache/openmmlab/mmagic/). If cached inception pkl is not found, then extracting will be performed.

To use the FID metric, you should add the metric in a config file like this:

metrics = [
    dict(
        type='FrechetInceptionDistance',
        prefix='FID-Full-50k',
        fake_nums=50000,
        inception_style='StyleGAN',
        sample_model='ema')
]





If you work on an new machine, then you can copy the pkl files in MMAGIC_CACHE_DIR and copy them to new machine and set inception_pkl field.

metrics = [
    dict(
        type='FrechetInceptionDistance',
        prefix='FID-Full-50k',
        fake_nums=50000,
        inception_style='StyleGAN',
        inception_pkl=
        'work_dirs/inception_pkl/inception_state-capture_mean_cov-full-33ad4546f8c9152e4b3bdb1b0c08dbaf.pkl',  # copied from old machine
        sample_model='ema')
]





TransFID has same usage as FID, but it’s designed for translation models like Pix2Pix and CycleGAN, which is adapted for our evaluator. You can refer
to evaluation for details.




IS and TransIS

Inception score is an objective metric for evaluating the quality of generated images, proposed in Improved Techniques for Training GANs [https://arxiv.org/pdf/1606.03498.pdf]. It uses an InceptionV3 model to predict the class of the generated images, and suppose that 1) If an image is of high quality, it will be categorized into a specific class. 2) If images are of high diversity, the range of images’ classes will be wide. So the KL-divergence of the conditional probability and marginal probability can indicate the quality and diversity of generated images. You can see the complete implementation in metrics.py, which refers to https://github.com/sbarratt/inception-score-pytorch/blob/master/inception_score.py.
If you want to evaluate models with IS metrics, you can add the metrics into your config file like this:

# at the end of the configs/biggan/biggan_2xb25-500kiters_cifar10-32x32.py
metrics = [
    xxx,
    dict(
        type='IS',
        prefix='IS-50k',
        fake_nums=50000,
        inception_style='StyleGAN',
        sample_model='ema')
]





To be noted that, the selection of Inception V3 and image resize method can significantly influence the final IS score. Therefore, we strongly recommend users may download the Tero’s script model of Inception V3 [https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/inception-2015-12-05.pt] (load this script model need torch >= 1.6) and use Bicubic interpolation with Pillow backend.

Corresponding to config, you can set resize_method and use_pillow_resize for image resizing. You can also set inception_style as StyleGAN for recommended tero’s inception model, or PyTorch for torchvision’s implementation. For environment without internet, you can download the inception’s weights, and set inception_path to your inception model.

We also perform a survey on the influence of data loading pipeline and the version of pretrained Inception V3 on the IS result. All IS are evaluated on the same group of images which are randomly selected from the ImageNet dataset.

  Show the Comparison Results 



	Code Base
	Inception V3 Version
	Data Loader Backend
	Resize Interpolation Method
	IS





	OpenAI (baseline)
	Tensorflow
	Pillow
	Pillow Bicubic
	312.255 +/- 4.970



	StyleGAN-Ada
	Tero's Script Model
	Pillow
	Pillow Bicubic
	311.895 +/ 4.844



	mmagic (Ours)
	Pytorch Pretrained
	cv2
	cv2 Bilinear
	322.932 +/- 2.317



	mmagic (Ours)
	Pytorch Pretrained
	cv2
	cv2 Bicubic
	324.604 +/- 5.157



	mmagic (Ours)
	Pytorch Pretrained
	cv2
	Pillow Bicubic
	318.161 +/- 5.330



	mmagic (Ours)
	Pytorch Pretrained
	Pillow
	Pillow Bilinear
	313.126 +/- 5.449



	mmagic (Ours)
	Pytorch Pretrained
	Pillow
	cv2 Bilinear
	318.021+/-3.864



	mmagic (Ours)
	Pytorch Pretrained
	Pillow
	Pillow Bicubic
	317.997 +/- 5.350



	mmagic (Ours)
	Tero's Script Model
	cv2
	cv2 Bilinear
	318.879 +/- 2.433



	mmagic (Ours)
	Tero's Script Model
	cv2
	cv2 Bicubic
	316.125 +/- 5.718



	mmagic (Ours)
	Tero's Script Model
	cv2
	Pillow Bicubic
	312.045 +/- 5.440



	mmagic (Ours)
	Tero's Script Model
	Pillow
	Pillow Bilinear
	308.645 +/- 5.374



	mmagic (Ours)
	Tero's Script Model
	Pillow
	Pillow Bicubic
	311.733 +/- 5.375






TransIS has same usage as IS, but it’s designed for translation models like Pix2Pix and CycleGAN, which is adapted for our evaluator. You can refer
to evaluation for details.




Precision and Recall

Our Precision and Recall implementation follows the version used in StyleGAN2. In this metric, a VGG network will be adopted to extract the features for images. Unfortunately, we have not found a PyTorch VGG implementation leading to similar results with Tero’s version used in StyleGAN2. (About the differences, please see this file [https://github.com/open-mmlab/mmagic/blob/main/configs/styleganv2/README.md].) Thus, in our implementation, we adopt Teor’s VGG [https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt] network by default. Importantly, applying this script module needs PyTorch >= 1.6.0. If with a lower PyTorch version, we will use the PyTorch official VGG network for feature extraction.

To evaluate with P&R, please add the following configuration in the config file:

metrics = [
    dict(type='PrecisionAndRecall', fake_nums=50000, prefix='PR-50K')
]








PPL

Perceptual path length measures the difference between consecutive images (their VGG16 embeddings) when interpolating between two random inputs. Drastic changes mean that multiple features have changed together and that they might be entangled. Thus, a smaller PPL score appears to indicate higher overall image quality by experiments. 

As a basis for our metric, we use a perceptually-based pairwise image distance that is calculated as a weighted difference between two VGG16 embeddings, where the weights are fit so that the metric agrees with human perceptual similarity judgments.
If we subdivide a latent space interpolation path into linear segments, we can define the total perceptual length of this segmented path as the sum of perceptual differences over each segment, and a natural definition for the perceptual path length would be the limit of this sum under infinitely fine subdivision, but in practice we approximate it using a small subdivision $`\epsilon=10^{-4}`$.
The average perceptual path length in latent space Z, over all possible endpoints, is therefore

$$`L_Z = E[\frac{1}{\epsilon^2}d(G(slerp(z_1,z_2;t))), G(slerp(z_1,z_2;t+\epsilon)))]`$$

Computing the average perceptual path length in latent space W is carried out in a similar fashion:

$$`L_Z = E[\frac{1}{\epsilon^2}d(G(slerp(z_1,z_2;t))), G(slerp(z_1,z_2;t+\epsilon)))]`$$

Where $`z_1, z_2 \sim P(z)`$, and $` t \sim U(0,1)`$ if we set sampling to full, $` t \in \{0,1\}`$ if we set sampling to end. $` G`$ is the generator(i.e. $` g \circ f`$ for style-based networks), and $` d(.,.)`$ evaluates the perceptual distance between the resulting images.We compute the expectation by taking 100,000 samples (set num_images to 50,000 in our code).

You can find the complete implementation in metrics.py, which refers to https://github.com/rosinality/stylegan2-pytorch/blob/master/ppl.py.
If you want to evaluate models with PPL metrics, you can add the metrics into your config file like this:

# at the end of the configs/styleganv2/stylegan2_c2_ffhq_1024_b4x8.py
metrics = [
    xxx,
    dict(type='PerceptualPathLength', fake_nums=50000, prefix='ppl-w')
]








SWD

Sliced Wasserstein distance is a discrepancy measure for probability distributions, and smaller distance indicates generated images look like the real ones. We obtain the Laplacian pyramids of every image and extract patches from the Laplacian pyramids as descriptors, then SWD can be calculated by taking the sliced Wasserstein distance of the real and fake descriptors.
You can see the complete implementation in metrics.py, which refers to https://github.com/tkarras/progressive_growing_of_gans/blob/master/metrics/sliced_wasserstein.py.
If you want to evaluate models with SWD metrics, you can add the metrics into your config file like this:

# at the end of the configs/dcgan/dcgan_1xb128-5epoches_lsun-bedroom-64x64.py
metrics = [
    dict(
        type='SWD',
        prefix='swd',
        fake_nums=16384,
        sample_model='orig',
        image_shape=(3, 64, 64))
]








MS-SSIM

Multi-scale structural similarity is used to measure the similarity of two images. We use MS-SSIM here to measure the diversity of generated images, and a low MS-SSIM score indicates the high diversity of generated images. You can see the complete implementation in metrics.py, which refers to https://github.com/tkarras/progressive_growing_of_gans/blob/master/metrics/ms_ssim.py.
If you want to evaluate models with MS-SSIM metrics, you can add the metrics into your config file like this:

# at the end of the configs/dcgan/dcgan_1xb128-5epoches_lsun-bedroom-64x64.py
metrics = [
    dict(
        type='MS_SSIM', prefix='ms-ssim', fake_nums=10000,
        sample_model='orig')
]








Equivarience

Equivarience of generative models refer to the exchangeability of model forward and geometric transformations. Currently this metric is only calculated for StyleGANv3,
you can see the complete implementation in metrics.py, which refers to https://github.com/NVlabs/stylegan3/blob/main/metrics/equivariance.py.
If you want to evaluate models with Equivarience metrics, you can add the metrics into your config file like this:

# at the end of the configs/styleganv3/stylegan3-t_gamma2.0_8xb4-fp16-noaug_ffhq-256x256.py
metrics = [
    dict(
        type='Equivariance',
        fake_nums=50000,
        sample_mode='ema',
        prefix='EQ',
        eq_cfg=dict(
            compute_eqt_int=True, compute_eqt_frac=True, compute_eqr=True))
]
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Tutorial 6: Visualization

The visualization of images is an important way to measure the quality of image processing, editing and synthesis.
Using visualizer in config file can save visual results when training or testing. You can follow MMEngine Documents [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/visualization.md] to learn the usage of visualization. MMagic provides a rich set of visualization functions.
In this tutorial, we introduce the usage of the visualization functions provided by MMagic.


	Tutorial 6: Visualization


	Overview


	Visualization configuration of GANs


	Visualization configuration of image translation models


	Visualization configuration of diffusion models


	Visualization configuration of inpainting models


	Visualization configuration of matting models


	Visualization configuration of SISR/VSR/VFI models






	Visualization Hook


	Visualizer


	VisBackend


	Use Different Storage Backends













Overview

It is recommended to learn the basic concept of visualization in design documentation.

In MMagic, the visualization of the training or testing process requires the configuration of three components: VisualizationHook, Visualizer, and VisBackend, The diagram below shows the relationship between Visualizer and VisBackend,





VisualizationHook fetches the visualization results of the model output in fixed intervals during training and passes them to Visualizer.
Visualizer is responsible for converting the original visualization results into the desired type (png, gif, etc.) and then transferring them to VisBackend for storage or display.


Visualization configuration of GANs

For GAN models, such as StyleGAN and SAGAN, a usual configuration is shown below:

# VisualizationHook
custom_hooks = [
    dict(
        type='VisualizationHook',
        interval=5000,  # visualization interval
        fixed_input=True,  # whether use fixed noise input to generate images
        vis_kwargs_list=dict(type='GAN', name='fake_img')  # pre-defined visualization arguments for GAN models
    )
]
# VisBackend
vis_backends = [
    dict(type='VisBackend'),  # vis_backend for saving images to file system
    dict(type='WandbVisBackend',  # vis_backend for uploading images to Wandb
        init_kwargs=dict(
            project='MMagic',   # project name for Wandb
            name='GAN-Visualization-Demo'  # name of the experiment for Wandb
        ))
]
# Visualizer
visualizer = dict(type='Visualizer', vis_backends=vis_backends)





If you apply Exponential Moving Average (EMA) to a generator and want to visualize the EMA model, you can modify config of VisualizationHook as below:

custom_hooks = [
    dict(
        type='VisualizationHook',
        interval=5000,
        fixed_input=True,
        # vis ema and orig in `fake_img` at the same time
        vis_kwargs_list=dict(
            type='Noise',
            name='fake_img',  # save images with prefix `fake_img`
            sample_model='ema/orig',  # specified kwargs for `NoiseSampler`
            target_keys=['ema.fake_img', 'orig.fake_img']  # specific key to visualization
        ))
]








Visualization configuration of image translation models

For Translation models, such as CycleGAN and Pix2Pix, visualization configs can be formed as below:

# VisualizationHook
custom_hooks = [
    dict(
        type='VisualizationHook',
        interval=5000,
        fixed_input=True,
        vis_kwargs_list=[
            dict(
                type='Translation',  # Visualize results on the training set
                name='trans'),  #  save images with prefix `trans`
            dict(
                type='Translationval',  # Visualize results on the validation set
                name='trans_val'),  #  save images with prefix `trans_val`
        ])
]
# VisBackend
vis_backends = [
    dict(type='VisBackend'),  # vis_backend for saving images to file system
    dict(type='WandbVisBackend',  # vis_backend for uploading images to Wandb
        init_kwargs=dict(
            project='MMagic',   # project name for Wandb
            name='Translation-Visualization-Demo'  # name of the experiment for Wandb
        ))
]
# Visualizer
visualizer = dict(type='Visualizer', vis_backends=vis_backends)








Visualization configuration of diffusion models

For Diffusion models, such as Improved-DDPM, we can use the following configuration to visualize the denoising process through a gif:

# VisualizationHook
custom_hooks = [
    dict(
        type='VisualizationHook',
        interval=5000,
        fixed_input=True,
        vis_kwargs_list=dict(type='DDPMDenoising'))  # pre-defined visualization argument for DDPM models
]
# VisBackend
vis_backends = [
    dict(type='VisBackend'),  # vis_backend for saving images to file system
    dict(type='WandbVisBackend',  # vis_backend for uploading images to Wandb
        init_kwargs=dict(
            project='MMagic',   # project name for Wandb
            name='Diffusion-Visualization-Demo'  # name of the experiment for Wandb
        ))
]
# Visualizer
visualizer = dict(type='Visualizer', vis_backends=vis_backends)








Visualization configuration of inpainting models

For inpainting models, such as AOT-GAN and Global&Local, a usual configuration is shown below:

# VisBackend
vis_backends = [dict(type='LocalVisBackend')]
# Visualizer
visualizer = dict(
    type='ConcatImageVisualizer',
    vis_backends=vis_backends,
    fn_key='gt_path',
    img_keys=['gt_img', 'input', 'pred_img'],
    bgr2rgb=True)
# VisualizationHook
custom_hooks = [dict(type='BasicVisualizationHook', interval=1)]








Visualization configuration of matting models

For matting models, such as DIM and GCA, a usual configuration is shown below:

# VisBackend
vis_backends = [dict(type='LocalVisBackend')]
# Visualizer
visualizer = dict(
    type='ConcatImageVisualizer',
    vis_backends=vis_backends,
    fn_key='trimap_path',
    img_keys=['pred_alpha', 'trimap', 'gt_merged', 'gt_alpha'],
    bgr2rgb=True)
# VisualizationHook
custom_hooks = [dict(type='BasicVisualizationHook', interval=1)]








Visualization configuration of SISR/VSR/VFI models

For SISR/VSR/VFI models, such as EDSR, EDVR and CAIN, a usual configuration is shown below:

# VisBackend
vis_backends = [dict(type='LocalVisBackend')]
# Visualizer
visualizer = dict(
    type='ConcatImageVisualizer',
    vis_backends=vis_backends,
    fn_key='gt_path',
    img_keys=['gt_img', 'input', 'pred_img'],
    bgr2rgb=False)
# VisualizationHook
custom_hooks = [dict(type='BasicVisualizationHook', interval=1)]





The specific configuration of the VisualizationHook, Visualizer and VisBackend components are described below






Visualization Hook

In MMagic, we use BasicVisualizationHook and VisualizationHook as VisualizationHook.
VisualizationHook supports three following cases.

(1) Modify vis_kwargs_list to visualize the output of the model under specific inputs , which is suitable for visualization of the generated results of GAN and translation results of Image-to-Image-Translation models under specific data input, etc. Below are two typical examples:

# input as dict
vis_kwargs_list = dict(
    type='Noise',  # use 'Noise' sampler to generate model input
    name='fake_img',  # define prefix of saved images
)

# input as list of dict
vis_kwargs_list = [
    dict(type='Arguments',  # use `Arguments` sampler to generate model input
         name='arg_output',  # define prefix of saved images
         vis_mode='gif',  # specific visualization mode as GIF
         forward_kwargs=dict(forward_mode='sampling', sample_kwargs=dict(show_pbar=True))  # specific kwargs for `Arguments` sampler
    ),
    dict(type='Data',  # use `Data` sampler to feed data in dataloader to model as input
         n_samples=36,  # specific how many samples want to generate
         fixed_input=False,  # specific do not use fixed input for each visualization process
    )
]





vis_kwargs_list takes dict or list of dict as input. Each of dict must contain a type field indicating the type of sampler used to generate the model input, and each of the dict must also contain the keyword fields necessary for the sampler (e.g. ArgumentSampler requires that the argument dictionary contain forward_kwargs).


To be noted that, this content is checked by the corresponding sampler and is not restricted by BasicVisualizationHook.




In addition, the other fields are generic fields (e.g. n_samples, n_row, name, fixed_input, etc.).
If not passed in, the default values from the BasicVisualizationHook initialization will be used.

For the convenience of users, MMagic has pre-defined visualization parameters for GAN, Translation models, SinGAN and Diffusion models, and users can directly use the predefined visualization methods by using the following configuration:

vis_kwargs_list = dict(type='GAN')
vis_kwargs_list = dict(type='SinGAN')
vis_kwargs_list = dict(type='Translation')
vis_kwargs_list = dict(type='TranslationVal')
vis_kwargs_list = dict(type='TranslationTest')
vis_kwargs_list = dict(type='DDPMDenoising')








Visualizer

In MMagic, we implement ConcatImageVisualizer and Visualizer, which inherit from mmengine.Visualizer.
The base class of Visualizer is ManagerMixin and this makes Visualizer a globally unique object.
After being instantiated, Visualizer can be called at anywhere of the code by Visualizer.get_current_instance(), as shown below:

# configs
vis_backends = [dict(type='VisBackend')]
visualizer = dict(
    type='Visualizer', vis_backends=vis_backends, name='visualizer')





# `get_instance()` is called for globally unique instantiation
VISUALIZERS.build(cfg.visualizer)

# Once instantiated by the above code, you can call the `get_current_instance` method at any location to get the visualizer
visualizer = Visualizer.get_current_instance()





The core interface of Visualizer is add_datasample.
Through this interface,
This interface will call the corresponding drawing function according to the corresponding vis_mode to obtain the visualization result in np.ndarray type.
Then show or add_image will be called to directly show the results or pass the visualization result to the predefined vis_backend.




VisBackend

In general, users do not need to manipulate VisBackend objects, only when the current visualization storage can not meet the needs, users will want to manipulate the storage backend directly.
MMagic supports a variety of different visualization backends, including:


	Basic VisBackend of MMEngine: including LocalVisBackend, TensorboardVisBackend and WandbVisBackend. You can follow MMEngine Documents [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/visualization.md] to learn more about them


	VisBackend: Backend for File System. Save the visualization results to the corresponding position.


	TensorboardVisBackend: Backend for Tensorboard. Send the visualization results to Tensorboard.


	WandbVisBackend: Backend for Wandb. Send the visualization results to Tensorboard.




One Visualizer object can have access to any number of VisBackends and users can access to the backend by their class name in their code.

# configs
vis_backends = [dict(type='Visualizer'), dict(type='WandbVisBackend')]
visualizer = dict(
    type='Visualizer', vis_backends=vis_backends, name='visualizer')





# code
VISUALIZERS.build(cfg.visualizer)
visualizer = Visualizer.get_current_instance()

# access to the backend by class name
gen_vis_backend = visualizer.get_backend('VisBackend')
gen_wandb_vis_backend = visualizer.get_backend('GenWandbVisBackend')





When there are multiply VisBackend with the same class name, user must specific name for each VisBackend.

# configs
vis_backends = [
    dict(type='VisBackend', name='gen_vis_backend_1'),
    dict(type='VisBackend', name='gen_vis_backend_2')
]
visualizer = dict(
    type='Visualizer', vis_backends=vis_backends, name='visualizer')





# code
VISUALIZERS.build(cfg.visualizer)
visualizer = Visualizer.get_current_instance()

local_vis_backend_1 = visualizer.get_backend('gen_vis_backend_1')
local_vis_backend_2 = visualizer.get_backend('gen_vis_backend_2')






Visualize by Different Storage Backends

If you want to use a different backend (Wandb, Tensorboard, or a custom backend with a remote window), just change the vis_backends in the config, as follows:

Local

vis_backends = [dict(type='LocalVisBackend')]





Tensorboard

vis_backends = [dict(type='TensorboardVisBackend')]
visualizer = dict(
    type='ConcatImageVisualizer', vis_backends=vis_backends, name='visualizer')





vis_backends = [dict(type='WandbVisBackend')]
visualizer = dict(
    type='ConcatImageVisualizer', vis_backends=vis_backends, name='visualizer')
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Tutorial 7: Useful tools

We provide lots of useful tools under tools/ directory.

The structure of this guide is as follows:


	Tutorial 7: Useful tools


	Get the FLOPs and params


	Publish a model


	Print full config









Get the FLOPs and params

We provide a script adapted from flops-counter.pytorch [https://github.com/sovrasov/flops-counter.pytorch] to compute the FLOPs and params of a given model.

python tools/analysis_tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]





For example,

python tools/analysis_tools/get_flops.py configs/resotorer/srresnet.py --shape 40 40





You will get the result like this.

==============================
Input shape: (3, 40, 40)
Flops: 4.07 GMac
Params: 1.52 M
==============================





Note: This tool is still experimental and we do not guarantee that the number is correct. You may well use the result for simple comparisons, but double check it before you adopt it in technical reports or papers.

(1) FLOPs are related to the input shape while parameters are not. The default input shape is (1, 3, 250, 250).
(2) Some operators are not counted in FLOPs like GN and custom operators.
You can add support for new operators by modifying mmcv/cnn/utils/flops_counter.py [https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/flops_counter.py].




Publish a model

Before you upload a model to AWS, you may want to


	convert model weights to CPU tensors


	delete the optimizer states and


	compute the hash of the checkpoint file and append time and the hash id to the
filename.




python tools/model_converters/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}





E.g.,

python tools/model_converters/publish_model.py work_dirs/stylegan2/latest.pth stylegan2_c2_8xb4_ffhq-1024x1024.pth





The final output filename will be stylegan2_c2_8xb4_ffhq-1024x1024_{time}-{hash id}.pth.




Print full config

MMGeneration incorporates config mechanism to set parameters used for training and testing models. With our config mechanism, users can easily conduct extensive experiments without hard coding. If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/CONFIG to see the complete config.

An Example:

python tools/misc/print_config.py configs/styleganv2/stylegan2_c2-PL_8xb4-fp16-partial-GD-no-scaler-800kiters_ffhq-256x256.py
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Tutorial 8: Deploy models in MMagic

The deployment of OpenMMLab codebases, including MMClassification, MMDetection, MMagic and so on are supported by MMDeploy [https://github.com/open-mmlab/mmdeploy].
The latest deployment guide for MMagic can be found from here [https://mmdeploy.readthedocs.io/en/latest/04-supported-codebases/mmagic.html].

This tutorial is organized as follows:


	Tutorial 8: Deploy models in MMagic


	Installation


	Convert model


	Model specification


	Model inference


	Backend model inference


	SDK model inference






	Supported models









Installation

Please follow the guide to install mmagic. And then install mmdeploy from source by following this [https://mmdeploy.readthedocs.io/en/latest/get_started.html#installation] guide.


Note

If you install mmdeploy prebuilt package, please also clone its repository by ‘git clone https://github.com/open-mmlab/mmdeploy.git –depth=1’ to get the deployment config files.






Convert model

Suppose MMagic and mmdeploy repositories are in the same directory, and the working directory is the root path of MMagic.

Take ESRGAN model as an example.
You can download its checkpoint from here [https://download.openmmlab.com/MMagic/restorers/esrgan/esrgan_psnr_x4c64b23g32_1x16_1000k_div2k_20200420-bf5c993c.pth], and then convert it to onnx model as follows:

from mmdeploy.apis import torch2onnx
from mmdeploy.backend.sdk.export_info import export2SDK

img = 'tests/data/image/face/000001.png'
work_dir = 'mmdeploy_models/mmagic/onnx'
save_file = 'end2end.onnx'
deploy_cfg = '../mmdeploy/configs/mmagic/super-resolution/super-resolution_onnxruntime_dynamic.py'
model_cfg = 'configs/esrgan/esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k.py'
model_checkpoint = 'esrgan_psnr_x4c64b23g32_1x16_1000k_div2k_20200420-bf5c993c.pth'
device = 'cpu'

# 1. convert model to onnx
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg,
  model_checkpoint, device)

# 2. extract pipeline info for inference by MMDeploy SDK
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)





It is crucial to specify the correct deployment config during model conversion.MMDeploy has already provided builtin deployment config files [https://github.com/open-mmlab/mmdeploy/tree/main/configs/mmagic] of all supported backends for mmagic, under which the config file path follows the pattern:

{task}/{task}_{backend}-{precision}_{static | dynamic}_{shape}.py






	{task}: task in mmagic.


	{backend}: inference backend, such as onnxruntime, tensorrt, pplnn, ncnn, openvino, coreml etc.


	{precision}: fp16, int8. When it’s empty, it means fp32


	{static | dynamic}: static shape or dynamic shape


	{shape}: input shape or shape range of a model




Therefore, in the above example, you can also convert ESRGAN to other backend models by changing the deployment config file, e.g., converting to tensorrt-fp16 model by super-resolution_tensorrt-fp16_dynamic-32x32-512x512.py.


Tip

When converting mmagic models to tensorrt models, –device should be set to “cuda”






Model specification

Before moving on to model inference chapter, let’s know more about the converted model structure which is very important for model inference.

The converted model locates in the working directory like mmdeploy_models/mmagic/onnx in the previous example. It includes:

mmdeploy_models/mmagic/onnx
├── deploy.json
├── detail.json
├── end2end.onnx
└── pipeline.json





in which,


	end2end.onnx: backend model which can be inferred by ONNX Runtime


	xxx.json: the necessary information for mmdeploy SDK




The whole package mmdeploy_models/mmagic/onnx is defined as mmdeploy SDK model, i.e., mmdeploy SDK model includes both backend model and inference meta information.




Model inference


Backend model inference

Take the previous converted end2end.onnx model as an example, you can use the following code to inference the model.

from mmdeploy.apis.utils import build_task_processor
from mmdeploy.utils import get_input_shape, load_config
import torch

deploy_cfg = '../mmdeploy/configs/mmagic/super-resolution/super-resolution_onnxruntime_dynamic.py'
model_cfg = 'configs/esrgan/esrgan_psnr-x4c64b23g32_1xb16-1000k_div2k.py'
device = 'cpu'
backend_model = ['mmdeploy_models/mmagic/onnx/end2end.onnx']
image = 'tests/data/image/lq/baboon_x4.png'

# read deploy_cfg and model_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)

# build task and backend model
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
model = task_processor.build_backend_model(backend_model)

# process input image
input_shape = get_input_shape(deploy_cfg)
model_inputs, _ = task_processor.create_input(image, input_shape)

# do model inference
with torch.no_grad():
    result = model.test_step(model_inputs)

# visualize results
task_processor.visualize(
    image=image,
    model=model,
    result=result[0],
    window_name='visualize',
    output_file='output_restorer.bmp')








SDK model inference

You can also perform SDK model inference like following,

from mmdeploy_python import Restorer
import cv2

img = cv2.imread('tests/data/image/lq/baboon_x4.png')

# create a predictor
restorer = Restorer(model_path='mmdeploy_models/mmagic/onnx', device_name='cpu', device_id=0)
# perform inference
result = restorer(img)

# visualize inference result
cv2.imwrite('output_restorer.bmp', result)





Besides python API, MMDeploy SDK also provides other FFI (Foreign Function Interface), such as C, C++, C#, Java and so on. You can learn their usage from demos [https://github.com/open-mmlab/mmdeploy/tree/main/demo].






Supported models

Please refer to here [https://mmdeploy.readthedocs.io/en/latest/04-supported-codebases/mmagic.html#supported-models] for the supported model list.
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Evaluator


Evaluation Metrics and Evaluators

In model validation and testing, it is usually necessary to quantitatively evaluate the accuracy of the model. In mmagic, the evaluation metrics and evaluators are implemented to accomplish this functionality.


	Evaluation metrics are used to calculate specific model accuracy indicators based on test data and model prediction results. mmagic provides a variety of built-in metrics, which can be found in the metrics documentation. Additionally, metrics are decoupled from datasets and can be used for multiple datasets.


	The evaluator is the top-level module for evaluation metrics and usually contains one or more metrics. The purpose of the evaluator is to perform necessary data format conversion and call evaluation metrics to calculate the model accuracy during model evaluation. The evaluator is typically built by a Runner or a testing script, which are used for online evaluation and offline evaluation, respectively.




The evaluator in MMagic inherits from that in MMEngine and has a similar basic usage. For specific information, you can refer to Model Accuracy Evaluation [https://mmengine.readthedocs.io/en/latest/tutorials/evaluation.html]. However, different from other high-level vision tasks, the evaluation metrics for generative models often have multiple inputs. For example, the input for the Inception Score (IS) metric is only fake images and any number of real images, while the Perceptual Path Length (PPL) requires sampling from the latent space. To accommodate different evaluation metrics, mmagic introduces two important methods, prepare_metrics and prepare_samplers to meet the above requirements.




prepare_metrics

class Evaluator(Evaluator):
	...
    def prepare_metrics(self, module: BaseModel, dataloader: DataLoader):
        """Prepare for metrics before evaluation starts. Some metrics use
        pretrained model to extract feature. Some metrics use pretrained model
        to extract feature and input channel order may vary among those models.
        Therefore, we first parse the output color order from data
        preprocessor and set the color order for each metric. Then we pass the
        dataloader to each metrics to prepare pre-calculated items. (e.g.
        inception feature of the real images). If metric has no pre-calculated
        items, :meth:`metric.prepare` will be ignored. Once the function has
        been called, :attr:`self.is_ready` will be set as `True`. If
        :attr:`self.is_ready` is `True`, this function will directly return to
        avoid duplicate computation.

        Args:
            module (BaseModel): Model to evaluate.
            dataloader (DataLoader): The dataloader for real images.
        """
        if self.metrics is None:
            self.is_ready = True
            return

        if self.is_ready:
            return

        # prepare metrics
        for metric in self.metrics:
            metric.prepare(module, dataloader)
        self.is_ready = True





The prepare_metrics method needs to be called before the evaluation starts. It is used to preprocess before evaluating each metric, and will sequentially call the prepare method of each metric in the evaluator to prepare any pre-calculated elements needed for that metric (such as features from hidden layers). Additionally, to avoid repeated calls, the evaluator.is_ready flag will be set to True after preprocessing for all metrics is completed.

class GenMetric(BaseMetric):
	...
    def prepare(self, module: nn.Module, dataloader: DataLoader) -> None:
        """Prepare for the pre-calculating items of the metric. Defaults to do
        nothing.

        Args:
            module (nn.Module): Model to evaluate.
            dataloader (DataLoader): Dataloader for the real images.
        """
        if is_model_wrapper(module):
            module = module.module
        self.data_preprocessor = module.data_preprocessor








prepare_samplers

Different metrics require different inputs for generative models. For example, FID, KID, and IS only need the generated fake images, while PPL requires vectors from the latent space. Therefore, mmagic groups different evaluation metrics based on the type of input. One or more evaluation metrics in the same group share a data sampler. The sampler mode for each evaluation metric is determined by the SAMPLER_MODE attribute of that metric.

class GenMetric(BaseMetric):
	...
    SAMPLER_MODE = 'normal'

class GenerativeMetric(GenMetric):
	...
    SAMPLER_MODE = 'Generative'





The prepare_samplers method of the evaluator is responsible for preparing the data samplers based on the sampler mode of all evaluation metrics.

class Evaluator(Evaluator):
	...
    def prepare_samplers(self, module: BaseModel, dataloader: DataLoader
                         ) -> List[Tuple[List[BaseMetric], Iterator]]:
        """Prepare for the sampler for metrics whose sampling mode are
        different. For generative models, different metric need image
        generated with different inputs. For example, FID, KID and IS need
        images generated with random noise, and PPL need paired images on the
        specific noise interpolation path. Therefore, we first group metrics
        with respect to their sampler's mode (refers to
        :attr:~`GenMetrics.SAMPLER_MODE`), and build a shared sampler for each
        metric group. To be noted that, the length of the shared sampler
        depends on the metric of the most images required in each group.

        Args:
            module (BaseModel): Model to evaluate. Some metrics (e.g. PPL)
                require `module` in their sampler.
            dataloader (DataLoader): The dataloader for real image.

        Returns:
            List[Tuple[List[BaseMetric], Iterator]]: A list of "metrics-shared
                sampler" pair.
        """
        if self.metrics is None:
            return [[[None], []]]

        # grouping metrics based on `SAMPLER_MODE` and `sample_mode`
        metric_mode_dict = defaultdict(list)
        for metric in self.metrics:  # Specify a sampler group for each metric.
            metric_md5 = self._cal_metric_hash(metric)
            metric_mode_dict[metric_md5].append(metric)

        metrics_sampler_list = []
        for metrics in metric_mode_dict.values(): # Generate a sampler for each group.
            first_metric = metrics[0]
            metrics_sampler_list.append([
                metrics,
                first_metric.get_metric_sampler(module, dataloader, metrics)
            ])

        return metrics_sampler_list





The method will first check if it has any evaluation metrics to calculate: if not, it will return directly. If there are metrics to calculate, it will iterate through all the evaluation metrics and group them based on the sampler_mode and sample_model. The specific implementation is as follows: it calculates a hash code based on the sampler_mode and sample_model, and puts the evaluation metrics with the same hash code into the same list.

class Evaluator(Evaluator):
	...
    @staticmethod
    def _cal_metric_hash(metric: GenMetric):
        """Calculate a unique hash value based on the `SAMPLER_MODE` and
        `sample_model`."""
        sampler_mode = metric.SAMPLER_MODE
        sample_model = metric.sample_model
        metric_dict = {
            'SAMPLER_MODE': sampler_mode,
            'sample_model': sample_model
        }
        if hasattr(metric, 'need_cond_input'):
            metric_dict['need_cond_input'] = metric.need_cond_input
        md5 = hashlib.md5(repr(metric_dict).encode('utf-8')).hexdigest()
        return md5





Finally, this method will generate a sampler for each evaluation metric group and add it to a list to return.




Evaluation process of an evaluator

The implementation of evaluation process can be found in mmagic.engine.runner.MultiValLoop.run and mmagic.engine.runner.MultiTestLoop.run. Here we take mmagic.engine.runner.MultiValLoop.run as example.

class MultiValLoop(BaseLoop):
	...
    def run(self):
	...
        # 1. prepare all metrics and get the total length
        metrics_sampler_lists = []
        meta_info_list = []
        dataset_name_list = []
        for evaluator, dataloader in zip(self.evaluators, self.dataloaders):
            # 1.1 prepare for metrics
            evaluator.prepare_metrics(module, dataloader)
            # 1.2 prepare for metric-sampler pair
            metrics_sampler_list = evaluator.prepare_samplers(
                module, dataloader)
            metrics_sampler_lists.append(metrics_sampler_list)
            # 1.3 update total length
            self._total_length += sum([
                len(metrics_sampler[1])
                for metrics_sampler in metrics_sampler_list
            ])
            # 1.4 save metainfo and dataset's name
            meta_info_list.append(
                getattr(dataloader.dataset, 'metainfo', None))
            dataset_name_list.append(dataloader.dataset.__class__.__name__)





First, the runner will perform preprocessing and obtain the necessary data samplers for evaluation using the evaluator.prepare_metric and evaluator.prepare_samplers methods. It will also update the total length of samples obtained using the samplers. As the evaluation metrics and dataset in mmagic are separated, some meta_info required for evaluation also needs to be saved and passed to the evaluator.

class MultiValLoop(BaseLoop):
	...
    def run(self):
	...
        # 2. run evaluation
        for idx in range(len(self.evaluators)):
            # 2.1 set self.evaluator for run_iter
            self.evaluator = self.evaluators[idx]
            self.dataloader = self.dataloaders[idx]

            # 2.2 update metainfo for evaluator and visualizer
            meta_info = meta_info_list[idx]
            dataset_name = dataset_name_list[idx]
            if meta_info:
                self.evaluator.dataset_meta = meta_info
                self._runner.visualizer.dataset_meta = meta_info
            else:
                warnings.warn(
                    f'Dataset {dataset_name} has no metainfo. `dataset_meta` '
                    'in evaluator, metric and visualizer will be None.')

            # 2.3 generate images
            metrics_sampler_list = metrics_sampler_lists[idx]
            for metrics, sampler in metrics_sampler_list:
                for data in sampler:
                    self.run_iter(idx_counter, data, metrics)
                    idx_counter += 1

            # 2.4 evaluate metrics and update multi_metric
            metrics = self.evaluator.evaluate()
            if multi_metric and metrics.keys() & multi_metric.keys():
                raise ValueError('Please set different prefix for different'
                                 ' datasets in `val_evaluator`')
            else:
                multi_metric.update(metrics)
        # 3. finish evaluation and call hooks
        self._runner.call_hook('after_val_epoch', metrics=multi_metric)
        self._runner.call_hook('after_val')





After the preparation for evaluation is completed, the runner will iterate through all the evaluators and perform the evaluation one by one. Each evaluator needs to correspond to a data loader to complete the evaluation work for a dataset. Specifically, during the evaluation process for each evaluator, it is necessary to pass the required meta_info to the evaluator, then iterate through all the metrics_samplers of this evaluator to generate the images needed for evaluation, and finally complete the evaluation.
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Data Structure

DataSample , the data structure interface of MMagic, inherits from  BaseDataElement [https://mmengine.readthedocs.io/en/latest/advanced_tutorials/data_element.html]. The base class has implemented basic add/delete/update/check functions and supports data migration between different devices, as well as dictionary-like and tensor-like operations, which also allows the interfaces of different algorithms to be unified.

Specifically, an instance of BaseDataElement consists of two components:


	metainfo, which contains some meta information,
e.g., img_shape, img_id, color_order, etc.


	data, which contains the data used in the loop.




Thanks to  DataSample , the data flow between each module in the algorithm libraries, such as visualizer [https://mmagic.readthedocs.io/en/latest/user_guides/visualization.html], evaluator [https://mmagic.readthedocs.io/en/latest/advanced_guides/evaluator.html], model [https://mmagic.readthedocs.io/en/latest/howto/models.html], is greatly simplified.

The attributes in DataSample are divided into several parts:

- ``gt_img``: Ground truth image(s).
- ``pred_img``: Image(s) of model predictions.
- ``ref_img``: Reference image(s).
- ``mask``: Mask in Inpainting.
- ``trimap``: Trimap in Matting.
- ``gt_alpha``: Ground truth alpha image in Matting.
- ``pred_alpha``: Predicted alpha image in Matting.
- ``gt_fg``: Ground truth foreground image in Matting.
- ``pred_fg``: Predicted foreground image in Matting.
- ``gt_bg``: Ground truth background image in Matting.
- ``pred_bg``: Predicted background image in Matting.
- ``gt_merged``: Ground truth merged image in Matting.





The following sample code demonstrates the components of DataSample:

     >>> import torch
     >>> import numpy as np
     >>> from mmagic.structures import DataSample
     >>> img_meta = dict(img_shape=(800, 1196, 3))
     >>> img = torch.rand((3, 800, 1196))
     >>> data_sample = DataSample(gt_img=img, metainfo=img_meta)
     >>> assert 'img_shape' in data_sample.metainfo_keys()
     >>> data_sample
	 >>># metainfo and data of DataSample
    <DataSample(

        META INFORMATION
        img_shape: (800, 1196, 3)

        DATA FIELDS
        gt_img: tensor(3, 800, 1196)
    ) at 0x1f6a5a99a00>





We also support stack and split operation to handle a batch of data samples.


	Stack




Stack a list of data samples to one. All tensor fields will be stacked at first dimension. Otherwise the values will be saved in a list.

    Args:
        data_samples (Sequence['DataSample']): A sequence of `DataSample` to stack.

    Returns:
        DataSample: The stacked data sample.






	Split




Split a sequence of data sample in the first dimension.

	Args:
         allow_nonseq_value (bool): Whether allow non-sequential data in
         split operation. If True, non-sequential data will be copied
         for all split data samples. Otherwise, an error will be
         raised. Defaults to False.

    Returns:
         Sequence[DataSample]: The list of data samples after splitting.





The following sample code demonstrates the use of stack and  split:

import torch
import numpy as np
from mmagic.structures import DataSample
img_meta1 = img_meta2 = dict(img_shape=(800, 1196, 3))
img1 = torch.rand((3, 800, 1196))
img2 = torch.rand((3, 800, 1196))
data_sample1 = DataSample(gt_img=img1, metainfo=img_meta1)
data_sample2 = DataSample(gt_img=img2, metainfo=img_meta1)





# stack them and then use as batched-tensor!
data_sample = DataSample.stack([data_sample1, data_sample2])
print(data_sample.gt_img.shape)
    torch.Size([2, 3, 800, 1196])
print(data_sample.metainfo)
    {'img_shape': [(800, 1196, 3), (800, 1196, 3)]}

# split them if you want
data_sample1_, data_sample2_ = data_sample.split()
assert (data_sample1_.gt_img == img1).all()
assert (data_sample2_.gt_img == img2).all()
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Data pre-processor


The position of the data preprocessor in the training pipeline.

During the model training process, image data undergoes data augmentation using the transforms provided by mmcv. The augmented data is then loaded into a dataloader. Subsequently, a preprocessor is used to move the data from the CPU to CUDA (GPU), perform padding, and normalize the data.

Below is an example of the train_pipeline in the complete configuration file using configs/_base_/datasets/unpaired_imgs_256x256.py. The train_pipeline typically defines a sequence of transformations applied to training images using the mmcv library. This pipeline is designed to prevent redundancy in the transformation functions across different downstream algorithm libraries.

...
train_pipeline = [
    dict(color_type='color', key='img_A', type='LoadImageFromFile'),
    dict(color_type='color', key='img_B', type='LoadImageFromFile'),
    dict(auto_remap=True, mapping=dict(img=['img_A', 'img_B',]),
        share_random_params=True,
        transforms=[dict(interpolation='bicubic', scale=(286, 286,), type='Resize'),
                    dict(crop_size=(256, 256,), keys=['img',], random_crop=True, type='Crop'),],
        type='TransformBroadcaster'),
    dict(direction='horizontal', keys=['img_A', ], type='Flip'),
    dict(direction='horizontal', keys=['img_B', ], type='Flip'),
    dict(mapping=dict(img_mask='img_B', img_photo='img_A'),
        remapping=dict(img_mask='img_mask', img_photo='img_photo'),
        type='KeyMapper'),
    dict(data_keys=['img_photo', 'img_mask',],
        keys=['img_photo', 'img_mask',], type='PackInputs'),
]
...





In the train_step function in the mmagic/models/editors/cyclegan/cyclegan.py script, the data preprocessing steps involve moving, concatenating, and normalizing the transformed data before feeding it into the neural network. Below is an example of the relevant code logic:

...
message_hub = MessageHub.get_current_instance()
curr_iter = message_hub.get_info('iter')
data = self.data_preprocessor(data, True)
disc_optimizer_wrapper = optim_wrapper['discriminators']

inputs_dict = data['inputs']
outputs, log_vars = dict(), dict()
...





In mmagic, the code implementation for the data processor is located at mmagic/models/data_preprocessors/data_preprocessor.py. The data processing workflow is as follows:
[image: image]
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Data flow


	Data Flow


	Overview of dataflow


	Data flow between dataset and model


	Data from dataloader


	Data from data preprocessor






	Data flow between model output and visualizer









Overview of dataflow

The Runner [https://github.com/open-mmlab/mmengine/blob/main/docs/en/design/runner.md] is an “integrator” in MMEngine. It covers all aspects of the framework and shoulders the responsibility of organizing and scheduling nearly all modules, that means the dataflow between all modules also controlled by the Runner. As illustrated in the Runner document of MMEngine [https://mmengine.readthedocs.io/en/latest/tutorials/runner.html], the following diagram shows the basic dataflow. In this chapter, we will introduce the dataflow and data format convention between the internal modules managed by the Runner [https://mmengine.readthedocs.io/en/latest/tutorials/runner.html].





In the above diagram, at each training iteration, dataloader loads images from storage and transfer to data preprocessor, data preprocessor would put images to the specific device and stack data to batch, then model accepts the batch data as inputs, finally the outputs of the model would be compute the loss. Since model parameters are freezed when doing evaluation, the model output would be transferred to Evaluator to compute metrics or seed the data to visualize in Visualizer.




Data flow between dataset and model

In this section, we will introduce the data flow passing in the dataset in MMagic. About dataset [https://mmagic.readthedocs.io/en/latest/howto/dataset.html] and [transforms] pipeline (https://mmagic.readthedocs.io/en/latest/howto/transforms.html) related tutorials can be found in the development of guidelines.The data flow between dataloader and model can be generally split into four parts:


	Read the original information of XXDataset collected datasets, and carry out data conversion processing through data transform pipeline;


	use PackInputs to pack data from previous transformations into a dictionar;


	use collate_fn to stack a list of tensors into a batched tensor;


	use data preprocessor to move all these data to target device, e.g. GPUS, and unzip the dictionary from the dataloader
into a tuple, containing the input images and meta info (DataSample).





Data from transform pipeline

In MMagic, different types of ‘XXDataset’ load the data (LQ) and label (GT), and perform data transformation in different data preprocessing pipelines, and finally package the processed data into a dictionary through PackInputs, which contains all the data required for training and testing iterations.



  
    	 base_edit_model.py 
    	 base_conditional_gan.py 


	
@MODELS.register_module()
class BaseEditModel(BaseModel):
    """Base model for image and video editing.
    """
    def forward(self,
                inputs: torch.Tensor,
                data_samples: Optional[List[DataSample]] = None,
                mode: str = 'tensor',
                **kwargs) -> Union[torch.Tensor, List[DataSample], dict]:
        if isinstance(inputs, dict):
            inputs = inputs['img']
        if mode == 'tensor':
            return self.forward_tensor(inputs, data_samples, **kwargs)

        elif mode == 'predict':
            predictions = self.forward_inference(inputs, data_samples,
                                                 **kwargs)
            predictions = self.convert_to_datasample(predictions, data_samples,
                                                     inputs)
            return predictions

        elif mode == 'loss':
            return self.forward_train(inputs, data_samples, **kwargs)






	
@MODELS.register_module()
class BaseConditionalGAN(BaseGAN):
    """Base class for Conditional GAM models.
    """
    def forward(self,
                inputs: ForwardInputs,
                data_samples: Optional[list] = None,
                mode: Optional[str] = None) -> List[DataSample]:
        if isinstance(inputs, Tensor):
            noise = inputs
            sample_kwargs = {}
        else:
            noise = inputs.get('noise', None)
            num_batches = get_valid_num_batches(inputs, data_samples)
            noise = self.noise_fn(noise, num_batches=num_batches)
            sample_kwargs = inputs.get('sample_kwargs', dict())
        num_batches = noise.shape[0]

        pass
        ...
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How to design your own models

MMagic is built upon MMEngine and MMCV, which enables users to design new models quickly, train and evaluate them easily.
In this section, you will learn how to design your own models.

The structure of this guide are as follows:


	How to design your own models


	Overview of models in MMagic


	An example of SRCNN


	Step 1: Define the network of SRCNN


	Step 2: Define the model of SRCNN


	Step 3: Start training SRCNN






	An example of DCGAN


	Step 1: Define the network of DCGAN


	Step 2: Design the model of DCGAN


	Step 3: Start training DCGAN






	References









Overview of models in MMagic

In MMagic, one algorithm can be splited two compents: Model and Module.


	Model are topmost wrappers and always inherint from BaseModel provided in MMEngine. Model is responsible to network forward, loss calculation and backward, parameters updating, etc. In MMagic, Model should be registered as MODELS.


	Module includes the neural network architectures to train or inference, pre-defined loss classes, and data preprocessors to preprocess the input data batch. Module always present as elements of Model. In MMagic, Module should be registered as MODULES.




Take DCGAN model as an example, generator [https://github.com/open-mmlab/mmagic/blob/main/mmagic/models/editors/dcgan/dcgan_generator.py] and discriminator [https://github.com/open-mmlab/mmagic/blob/main/mmagic/models/editors/dcgan/dcgan_discriminator.py] are the Module, which generate images and discriminate real or fake images. DCGAN [https://github.com/open-mmlab/mmagic/blob/main/mmagic/models/editors/dcgan/dcgan.py] is the Model, which take data from dataloader and train generator and discriminator alternatively.

You can find the implementation of Model and Module by the following link.


	Model:


	Editors [https://github.com/open-mmlab/mmagic/tree/main/mmagic/models/editors]






	Module:


	Layers [https://github.com/open-mmlab/mmagic/tree/main/mmagic/models/layers]


	Losses [https://github.com/open-mmlab/mmagic/tree/main/mmagic/models/losses]


	Data Preprocessor [https://github.com/open-mmlab/mmagic/tree/main/mmagic/models/data_preprocessors]











An example of SRCNN

Here, we take the implementation of the classical image super-resolution model, SRCNN [1], as an example.


Step 1: Define the network of SRCNN

SRCNN is the first deep learning method for single image super-resolution [1].
To implement the network architecture of SRCNN,
we need to create a new file mmagic/models/editors/srgan/sr_resnet.py and implement class MSRResNet.

In this step, we implement class MSRResNet by inheriting from mmengine.models.BaseModule and define the network architecture in __init__ function.
In particular, we need to use @MODELS.register_module() to add the implementation of class MSRResNet into the registration of MMagic.

import torch.nn as nn
from mmengine.model import BaseModule
from mmagic.registry import MODELS

from mmagic.models.utils import (PixelShufflePack, ResidualBlockNoBN,
                                 default_init_weights, make_layer)


@MODELS.register_module()
class MSRResNet(BaseModule):
    """Modified SRResNet.

    A compacted version modified from SRResNet in "Photo-Realistic Single
    Image Super-Resolution Using a Generative Adversarial Network".

    It uses residual blocks without BN, similar to EDSR.
    Currently, it supports x2, x3 and x4 upsampling scale factor.

    Args:
        in_channels (int): Channel number of inputs.
        out_channels (int): Channel number of outputs.
        mid_channels (int): Channel number of intermediate features.
            Default: 64.
        num_blocks (int): Block number in the trunk network. Default: 16.
        upscale_factor (int): Upsampling factor. Support x2, x3 and x4.
            Default: 4.
    """
    _supported_upscale_factors = [2, 3, 4]

    def __init__(self,
                 in_channels,
                 out_channels,
                 mid_channels=64,
                 num_blocks=16,
                 upscale_factor=4):

        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.mid_channels = mid_channels
        self.num_blocks = num_blocks
        self.upscale_factor = upscale_factor

        self.conv_first = nn.Conv2d(
            in_channels, mid_channels, 3, 1, 1, bias=True)
        self.trunk_net = make_layer(
            ResidualBlockNoBN, num_blocks, mid_channels=mid_channels)

        # upsampling
        if self.upscale_factor in [2, 3]:
            self.upsample1 = PixelShufflePack(
                mid_channels,
                mid_channels,
                self.upscale_factor,
                upsample_kernel=3)
        elif self.upscale_factor == 4:
            self.upsample1 = PixelShufflePack(
                mid_channels, mid_channels, 2, upsample_kernel=3)
            self.upsample2 = PixelShufflePack(
                mid_channels, mid_channels, 2, upsample_kernel=3)
        else:
            raise ValueError(
                f'Unsupported scale factor {self.upscale_factor}. '
                f'Currently supported ones are '
                f'{self._supported_upscale_factors}.')

        self.conv_hr = nn.Conv2d(
            mid_channels, mid_channels, 3, 1, 1, bias=True)
        self.conv_last = nn.Conv2d(
            mid_channels, out_channels, 3, 1, 1, bias=True)

        self.img_upsampler = nn.Upsample(
            scale_factor=self.upscale_factor,
            mode='bilinear',
            align_corners=False)

        # activation function
        self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)

        self.init_weights()

    def init_weights(self):
        """Init weights for models.

        Args:
            pretrained (str, optional): Path for pretrained weights. If given
                None, pretrained weights will not be loaded. Defaults to None.
            strict (boo, optional): Whether strictly load the pretrained model.
                Defaults to True.
        """

        for m in [self.conv_first, self.conv_hr, self.conv_last]:
            default_init_weights(m, 0.1)






Then, we implement the forward function of  class MSRResNet, which takes as input tensor and then returns the results from MSRResNet.

    def forward(self, x):
        """Forward function.

        Args:
            x (Tensor): Input tensor with shape (n, c, h, w).

        Returns:
            Tensor: Forward results.
        """

        feat = self.lrelu(self.conv_first(x))
        out = self.trunk_net(feat)

        if self.upscale_factor in [2, 3]:
            out = self.upsample1(out)
        elif self.upscale_factor == 4:
            out = self.upsample1(out)
            out = self.upsample2(out)

        out = self.conv_last(self.lrelu(self.conv_hr(out)))
        upsampled_img = self.img_upsampler(x)
        out += upsampled_img
        return out





After the implementation of class MSRResNet, we need to update the model list in mmagic/models/editors/__init__.py, so that we can import and use class MSRResNet by mmagic.models.editors.

from .srgan.sr_resnet import MSRResNet








Step 2: Define the model of SRCNN

After the implementation of the network architecture,
we need to define our model class BaseEditModel and implement the forward loop of class BaseEditModel.

To implement class BaseEditModel,
we create a new file mmagic/models/base_models/base_edit_model.py.
Specifically, class BaseEditModel inherits from mmengine.model.BaseModel.
In the __init__ function, we define the loss functions, training and testing configurations, networks of class BaseEditModel.

from typing import List, Optional

import torch
from mmengine.model import BaseModel

from mmagic.registry import MODELS
from mmagic.structures import DataSample


@MODELS.register_module()
class BaseEditModel(BaseModel):
    """Base model for image and video editing.

    It must contain a generator that takes frames as inputs and outputs an
    interpolated frame. It also has a pixel-wise loss for training.

    Args:
        generator (dict): Config for the generator structure.
        pixel_loss (dict): Config for pixel-wise loss.
        train_cfg (dict): Config for training. Default: None.
        test_cfg (dict): Config for testing. Default: None.
        init_cfg (dict, optional): The weight initialized config for
            :class:`BaseModule`.
        data_preprocessor (dict, optional): The pre-process config of
            :class:`BaseDataPreprocessor`.

    Attributes:
        init_cfg (dict, optional): Initialization config dict.
        data_preprocessor (:obj:`BaseDataPreprocessor`): Used for
            pre-processing data sampled by dataloader to the format accepted by
            :meth:`forward`. Default: None.
    """

    def __init__(self,
                 generator,
                 pixel_loss,
                 train_cfg=None,
                 test_cfg=None,
                 init_cfg=None,
                 data_preprocessor=None):
        super().__init__(
            init_cfg=init_cfg, data_preprocessor=data_preprocessor)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        # generator
        self.generator = MODELS.build(generator)

        # loss
        self.pixel_loss = MODELS.build(pixel_loss)





Since mmengine.model.BaseModel provides the basic functions of the algorithmic model,
such as weights initialize, batch inputs preprocess, parse losses, and update model parameters.
Therefore, the subclasses inherit from BaseModel, i.e., class BaseEditModel in this example,
only need to implement the forward method,
which implements the logic to calculate loss and predictions.

Specifically, the implemented forward function of class BaseEditModel takes as input batch_inputs and data_samples and return results according to mode arguments.

    def forward(self,
                batch_inputs: torch.Tensor,
                data_samples: Optional[List[DataSample]] = None,
                mode: str = 'tensor',
                **kwargs):
        """Returns losses or predictions of training, validation, testing, and
        simple inference process.

        ``forward`` method of BaseModel is an abstract method, its subclasses
        must implement this method.

        Accepts ``batch_inputs`` and ``data_samples`` processed by
        :attr:`data_preprocessor`, and returns results according to mode
        arguments.

        During non-distributed training, validation, and testing process,
        ``forward`` will be called by ``BaseModel.train_step``,
        ``BaseModel.val_step`` and ``BaseModel.val_step`` directly.

        During distributed data parallel training process,
        ``MMSeparateDistributedDataParallel.train_step`` will first call
        ``DistributedDataParallel.forward`` to enable automatic
        gradient synchronization, and then call ``forward`` to get training
        loss.

        Args:
            batch_inputs (torch.Tensor): batch input tensor collated by
                :attr:`data_preprocessor`.
            data_samples (List[BaseDataElement], optional):
                data samples collated by :attr:`data_preprocessor`.
            mode (str): mode should be one of ``loss``, ``predict`` and
                ``tensor``

                - ``loss``: Called by ``train_step`` and return loss ``dict``
                  used for logging
                - ``predict``: Called by ``val_step`` and ``test_step``
                  and return list of ``BaseDataElement`` results used for
                  computing metric.
                - ``tensor``: Called by custom use to get ``Tensor`` type
                  results.

        Returns:
            ForwardResults:

                - If ``mode == loss``, return a ``dict`` of loss tensor used
                  for backward and logging.
                - If ``mode == predict``, return a ``list`` of
                  :obj:`BaseDataElement` for computing metric
                  and getting inference result.
                - If ``mode == tensor``, return a tensor or ``tuple`` of tensor
                  or ``dict or tensor for custom use.
        """

        if mode == 'tensor':
            return self.forward_tensor(batch_inputs, data_samples, **kwargs)

        elif mode == 'predict':
            return self.forward_inference(batch_inputs, data_samples, **kwargs)

        elif mode == 'loss':
            return self.forward_train(batch_inputs, data_samples, **kwargs)





Specifically, in forward_tensor, class BaseEditModel returns the forward tensors of the network directly.

    def forward_tensor(self, batch_inputs, data_samples=None, **kwargs):
        """Forward tensor.
            Returns result of simple forward.

        Args:
            batch_inputs (torch.Tensor): batch input tensor collated by
                :attr:`data_preprocessor`.
            data_samples (List[BaseDataElement], optional):
                data samples collated by :attr:`data_preprocessor`.

        Returns:
            Tensor: result of simple forward.
        """

        feats = self.generator(batch_inputs, **kwargs)

        return feats





In forward_inference function, class BaseEditModel first converts the forward tensors to images and then returns the images as output.

    def forward_inference(self, batch_inputs, data_samples=None, **kwargs):
        """Forward inference.
            Returns predictions of validation, testing, and simple inference.

        Args:
            batch_inputs (torch.Tensor): batch input tensor collated by
                :attr:`data_preprocessor`.
            data_samples (List[BaseDataElement], optional):
                data samples collated by :attr:`data_preprocessor`.

        Returns:
            List[DataSample]: predictions.
        """

        feats = self.forward_tensor(batch_inputs, data_samples, **kwargs)
        feats = self.data_preprocessor.destructor(feats)
        predictions = []
        for idx in range(feats.shape[0]):
            predictions.append(
                DataSample(
                    pred_img=feats[idx].to('cpu'),
                    metainfo=data_samples[idx].metainfo))

        return predictions





In forward_train, class BaseEditModel calculate the loss function and returns a dictionary contains the losses as output.

    def forward_train(self, batch_inputs, data_samples=None, **kwargs):
        """Forward training.
            Returns dict of losses of training.

        Args:
            batch_inputs (torch.Tensor): batch input tensor collated by
                :attr:`data_preprocessor`.
            data_samples (List[BaseDataElement], optional):
                data samples collated by :attr:`data_preprocessor`.

        Returns:
            dict: Dict of losses.
        """

        feats = self.forward_tensor(batch_inputs, data_samples, **kwargs)
        gt_imgs = [data_sample.gt_img.data for data_sample in data_samples]
        batch_gt_data = torch.stack(gt_imgs)

        loss = self.pixel_loss(feats, batch_gt_data)

        return dict(loss=loss)






After the implementation of class BaseEditModel,
we need to update the model list in mmagic/models/__init__.py,
so that we can import and use class BaseEditModel by mmagic.models.

from .base_models.base_edit_model import BaseEditModel








Step 3: Start training SRCNN

After implementing the network architecture and the forward loop of SRCNN,
now we can create a new file configs/srcnn/srcnn_x4k915_g1_1000k_div2k.py
to set the configurations needed by training SRCNN.

In the configuration file, we need to specify the parameters of our model, class BaseEditModel, including the generator network architecture, loss function, additional training and testing configuration, and data preprocessor of input tensors. Please refer to the Introduction to the loss in MMagic for more details of losses in MMagic.

# model settings
model = dict(
    type='BaseEditModel',
    generator=dict(
        type='SRCNNNet',
        channels=(3, 64, 32, 3),
        kernel_sizes=(9, 1, 5),
        upscale_factor=scale),
    pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean'),
    data_preprocessor=dict(
        type='DataPreprocessor',
        mean=[0., 0., 0.],
        std=[255., 255., 255.],
    ))





We also need to specify the training dataloader and testing dataloader according to create your own dataloader.
Finally we can start training our own model by：

python tools/train.py configs/srcnn/srcnn_x4k915_g1_1000k_div2k.py










An example of DCGAN

Here, we take the implementation of the classical gan model, DCGAN [2], as an example.


Step 1: Define the network of DCGAN

DCGAN is a classical image generative adversarial network [2]. To implement the network architecture of DCGAN, we need to create tow new files mmagic/models/editors/dcgan/dcgan_generator.py and mmagic/models/editors/dcgan/dcgan_discriminator.py, and implement generator (class DCGANGenerator) and discriminator (class DCGANDiscriminator).

In this step, we implement class DCGANGenerator, class DCGANDiscriminator and define the network architecture in __init__ function.
In particular, we need to use @MODULES.register_module() to add the generator and discriminator into the registration of MMagic.

Take the following code as example:

import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.runner import load_checkpoint
from mmcv.utils.parrots_wrapper import _BatchNorm
from mmengine.logging import MMLogger
from mmengine.model.utils import normal_init

from mmagic.models.builder import MODULES
from ..common import get_module_device


@MODULES.register_module()
class DCGANGenerator(nn.Module):
    def __init__(self,
                 output_scale,
                 out_channels=3,
                 base_channels=1024,
                 input_scale=4,
                 noise_size=100,
                 default_norm_cfg=dict(type='BN'),
                 default_act_cfg=dict(type='ReLU'),
                 out_act_cfg=dict(type='Tanh'),
                 pretrained=None):
        super().__init__()
        self.output_scale = output_scale
        self.base_channels = base_channels
        self.input_scale = input_scale
        self.noise_size = noise_size

        # the number of times for upsampling
        self.num_upsamples = int(np.log2(output_scale // input_scale))

        # output 4x4 feature map
        self.noise2feat = ConvModule(
            noise_size,
            base_channels,
            kernel_size=4,
            stride=1,
            padding=0,
            conv_cfg=dict(type='ConvTranspose2d'),
            norm_cfg=default_norm_cfg,
            act_cfg=default_act_cfg)

        # build up upsampling backbone (excluding the output layer)
        upsampling = []
        curr_channel = base_channels
        for _ in range(self.num_upsamples - 1):
            upsampling.append(
                ConvModule(
                    curr_channel,
                    curr_channel // 2,
                    kernel_size=4,
                    stride=2,
                    padding=1,
                    conv_cfg=dict(type='ConvTranspose2d'),
                    norm_cfg=default_norm_cfg,
                    act_cfg=default_act_cfg))

            curr_channel //= 2

        self.upsampling = nn.Sequential(*upsampling)

        # output layer
        self.output_layer = ConvModule(
            curr_channel,
            out_channels,
            kernel_size=4,
            stride=2,
            padding=1,
            conv_cfg=dict(type='ConvTranspose2d'),
            norm_cfg=None,
            act_cfg=out_act_cfg)





Then, we implement the forward function of  DCGANGenerator, which takes as noise tensor or num_batches and then returns the results from DCGANGenerator.

    def forward(self, noise, num_batches=0, return_noise=False):
        noise_batch = noise_batch.to(get_module_device(self))
        x = self.noise2feat(noise_batch)
        x = self.upsampling(x)
        x = self.output_layer(x)
        return x





If you want to implement specific weights initialization method for you network, you need add init_weights function by yourself.

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = MMLogger.get_current_instance()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
                    normal_init(m, 0, 0.02)
                elif isinstance(m, _BatchNorm):
                    nn.init.normal_(m.weight.data)
                    nn.init.constant_(m.bias.data, 0)
        else:
            raise TypeError('pretrained must be a str or None but'
                            f' got {type(pretrained)} instead.')





After the implementation of class DCGANGenerator, we need to update the model list in mmagic/models/editors/__init__.py, so that we can import and use class DCGANGenerator by mmagic.models.editors.

Implementation of Class DCGANDiscriminator follows the similar logic, and you can find the implementation here [https://github.com/open-mmlab/mmagic/blob/main/mmagic/models/editors/dcgan/dcgan_discriminator.py].




Step 2: Design the model of DCGAN

After the implementation of the network Module, we need to define our Model class DCGAN.

Your Model should inherit from BaseModel [https://github.com/open-mmlab/mmengine/blob/main/mmengine/model/base_model/base_model.py#L16] provided by MMEngine and implement three functions, train_step, val_step and test_step.


	train_step: This function is responsible to update the parameters of the network and called by MMEngine’s Loop (IterBasedTrainLoop [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L183] or EpochBasedTrainLoop [https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/loops.py#L18]). train_step take data batch and OptimWrapper [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/optim_wrapper.md] as input and return a dict of log.


	val_step: This function is responsible for getting output for validation during the training process. and is called by MultiValLoop [https://github.com/open-mmlab/mmagic/blob/main/mmagic/engine/runner/multi_loops.py#L19].


	test_step: This function is responsible for getting output in test process and is called by MultiTestLoop [https://github.com/open-mmlab/mmagic/blob/main/mmagic/engine/runner/multi_loops.py#L274].





Note that, in train_step, val_step and test_step, DataPreprocessor is called to preprocess the input data batch before feed them to the neural network. To know more about DataPreprocessor please refer to this file [https://github.com/open-mmlab/mmagic/blob/main/mmagic/models/data_preprocessors/gen_preprocessor.py] and this tutorial [https://github.com/open-mmlab/mmengine/blob/main/docs/zh_cn/tutorials/model.md#%E6%95%B0%E6%8D%AE%E5%A4%84%E7%90%86%E5%99%A8datapreprocessor].




For simplify using, we provide BaseGAN [https://github.com/open-mmlab/mmagic/blob/main/mmagic/models/base_models/base_gan.py] class in MMagic, which implements generic train_step, val_step and test_step function for GAN models. With BaseGAN as base class, each specific GAN algorithm only need to implement train_generator and train_discriminator.

In train_step, we support data preprocessing, gradient accumulation (realized by OptimWrapper [https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/optim_wrapper.md]) and expontial moving averate (EMA) realized by (ExponentialMovingAverage) [https://github.com/open-mmlab/mmagic/blob/main/mmagic/models/base_models/average_model.py#L19]. With BaseGAN.train_step, each specific GAN algorithm only need to implement train_generator and train_discriminator.

    def train_step(self, data: dict,
                   optim_wrapper: OptimWrapperDict) -> Dict[str, Tensor]:
        message_hub = MessageHub.get_current_instance()
        curr_iter = message_hub.get_info('iter')
        data = self.data_preprocessor(data, True)
        disc_optimizer_wrapper: OptimWrapper = optim_wrapper['discriminator']
        disc_accu_iters = disc_optimizer_wrapper._accumulative_counts

        # train discriminator, use context manager provided by MMEngine
        with disc_optimizer_wrapper.optim_context(self.discriminator):
            # train_discriminator should be implemented!
            log_vars = self.train_discriminator(
                **data, optimizer_wrapper=disc_optimizer_wrapper)

        # add 1 to `curr_iter` because iter is updated in train loop.
        # Whether to update the generator. We update generator with
        # discriminator is fully updated for `self.n_discriminator_steps`
        # iterations. And one full updating for discriminator contains
        # `disc_accu_counts` times of grad accumulations.
        if (curr_iter + 1) % (self.discriminator_steps * disc_accu_iters) == 0:
            set_requires_grad(self.discriminator, False)
            gen_optimizer_wrapper = optim_wrapper['generator']
            gen_accu_iters = gen_optimizer_wrapper._accumulative_counts

            log_vars_gen_list = []
            # init optimizer wrapper status for generator manually
            gen_optimizer_wrapper.initialize_count_status(
                self.generator, 0, self.generator_steps * gen_accu_iters)
            # update generator, use context manager provided by MMEngine
            for _ in range(self.generator_steps * gen_accu_iters):
                with gen_optimizer_wrapper.optim_context(self.generator):
                    # train_generator should be implemented!
                    log_vars_gen = self.train_generator(
                        **data, optimizer_wrapper=gen_optimizer_wrapper)

                log_vars_gen_list.append(log_vars_gen)
            log_vars_gen = gather_log_vars(log_vars_gen_list)
            log_vars_gen.pop('loss', None)  # remove 'loss' from gen logs

            set_requires_grad(self.discriminator, True)

            # only do ema after generator update
            if self.with_ema_gen and (curr_iter + 1) >= (
                    self.ema_start * self.discriminator_steps *
                    disc_accu_iters):
                self.generator_ema.update_parameters(
                    self.generator.module
                    if is_model_wrapper(self.generator) else self.generator)

            log_vars.update(log_vars_gen)

        # return the log dict
        return log_vars





In val_step and test_step, we call data preprocessing and BaseGAN.forward progressively.

    def val_step(self, data: dict) -> SampleList:
        data = self.data_preprocessor(data)
        # call `forward`
        outputs = self(**data)
        return outputs

    def test_step(self, data: dict) -> SampleList:
        data = self.data_preprocessor(data)
        # call `orward`
        outputs = self(**data)
        return outputs





Then, we implement train_generator and train_discriminator in DCGAN class.

from typing import Dict, Tuple

import torch
import torch.nn.functional as F
from mmengine.optim import OptimWrapper
from torch import Tensor

from mmagic.registry import MODELS
from .base_gan import BaseGAN


@MODELS.register_module()
class DCGAN(BaseGAN):
    def disc_loss(self, disc_pred_fake: Tensor,
                  disc_pred_real: Tensor) -> Tuple:
        losses_dict = dict()
        losses_dict['loss_disc_fake'] = F.binary_cross_entropy_with_logits(
            disc_pred_fake, 0. * torch.ones_like(disc_pred_fake))
        losses_dict['loss_disc_real'] = F.binary_cross_entropy_with_logits(
            disc_pred_real, 1. * torch.ones_like(disc_pred_real))

        loss, log_var = self.parse_losses(losses_dict)
        return loss, log_var

    def gen_loss(self, disc_pred_fake: Tensor) -> Tuple:
        losses_dict = dict()
        losses_dict['loss_gen'] = F.binary_cross_entropy_with_logits(
            disc_pred_fake, 1. * torch.ones_like(disc_pred_fake))
        loss, log_var = self.parse_losses(losses_dict)
        return loss, log_var

    def train_discriminator(
            self, inputs, data_sample,
            optimizer_wrapper: OptimWrapper) -> Dict[str, Tensor]:
        real_imgs = inputs['img']

        num_batches = real_imgs.shape[0]

        noise_batch = self.noise_fn(num_batches=num_batches)
        with torch.no_grad():
            fake_imgs = self.generator(noise=noise_batch, return_noise=False)

        disc_pred_fake = self.discriminator(fake_imgs)
        disc_pred_real = self.discriminator(real_imgs)

        parsed_losses, log_vars = self.disc_loss(disc_pred_fake,
                                                 disc_pred_real)
        optimizer_wrapper.update_params(parsed_losses)
        return log_vars

    def train_generator(self, inputs, data_sample,
                        optimizer_wrapper: OptimWrapper) -> Dict[str, Tensor]:
        num_batches = inputs['img'].shape[0]

        noise = self.noise_fn(num_batches=num_batches)
        fake_imgs = self.generator(noise=noise, return_noise=False)

        disc_pred_fake = self.discriminator(fake_imgs)
        parsed_loss, log_vars = self.gen_loss(disc_pred_fake)

        optimizer_wrapper.update_params(parsed_loss)
        return log_vars





After the implementation of class DCGAN, we need to update the model list in mmagic/models/__init__.py, so that we can import and use class DCGAN by mmagic.models.




Step 3: Start training DCGAN

After implementing the network Module and the Model of DCGAN,
now we can create a new file configs/dcgan/dcgan_1xb128-5epoches_lsun-bedroom-64x64.py
to set the configurations needed by training DCGAN.

In the configuration file, we need to specify the parameters of our model, class DCGAN, including the generator network architecture and data preprocessor of input tensors.

# model settings
model = dict(
    type='DCGAN',
    noise_size=100,
    data_preprocessor=dict(type='GANDataPreprocessor'),
    generator=dict(type='DCGANGenerator', output_scale=64, base_channels=1024),
    discriminator=dict(
        type='DCGANDiscriminator',
        input_scale=64,
        output_scale=4,
        out_channels=1))





We also need to specify the training dataloader and testing dataloader according to create your own dataloader.
Finally we can start training our own model by：

python tools/train.py configs/dcgan/dcgan_1xb128-5epoches_lsun-bedroom-64x64.py
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How to prepare your own datasets

In this document, we will introduce the design of each datasets in MMagic and how users can design their own dataset.


	How to prepare your own datasets


	Supported Data Format


	BasicImageDataset


	BasicFramesDataset


	BasicConditonalDataset


	1. Annotation file read by line (e.g., txt)


	2. Dict-based annotation file (e.g., json):


	3. Folder-based annotation (no annotation file need):






	ImageNet Dataset and CIFAR10 Dataset


	AdobeComp1kDataset


	GrowScaleImgDataset


	SinGANDataset


	PairedImageDataset


	UnpairedImageDataset






	Design a new dataset


	Repeat dataset













Supported Data Format

In MMagic, all datasets are inherited from BaseDataset.
Each dataset load the list of data info (e.g., data path) by load_data_list.
In __getitem__, prepare_data is called to get the preprocessed data.
In prepare_data, data loading pipeline consists of the following steps:


	fetch the data info by passed index, implemented by get_data_info


	apply data transforms to the data, implemented by pipeline





BasicImageDataset

BasicImageDataset mmagic.datasets.BasicImageDataset
General image dataset designed for low-level vision tasks with image, such as image super-resolution, inpainting and unconditional image generation. The annotation file is optional.

If use annotation file, the annotation format can be shown as follows.

   Case 1 (CelebA-HQ):

       000001.png
       000002.png

   Case 2 (DIV2K):

       0001_s001.png (480,480,3)
       0001_s002.png (480,480,3)
       0001_s003.png (480,480,3)
       0002_s001.png (480,480,3)
       0002_s002.png (480,480,3)

   Case 3 (Vimeo90k):

       00001/0266 (256, 448, 3)
       00001/0268 (256, 448, 3)





Here we give several examples showing how to use BasicImageDataset. Assume the file structure as the following:

mmagic (root)
├── mmagic
├── tools
├── configs
├── data
│   ├── DIV2K
│   │   ├── DIV2K_train_HR
│   │   │   ├── image.png
│   │   ├── DIV2K_train_LR_bicubic
│   │   │   ├── X2
│   │   │   ├── X3
│   │   │   ├── X4
│   │   │   │   ├── image_x4.png
│   │   ├── DIV2K_valid_HR
│   │   ├── DIV2K_valid_LR_bicubic
│   │   │   ├── X2
│   │   │   ├── X3
│   │   │   ├── X4
│   ├── places
│   │   ├── test_set
│   │   ├── train_set
|   |   ├── meta
|   |   |    ├── Places365_train.txt
|   |   |    ├── Places365_val.txt
|   ├── celebahq
│   │   ├── imgs_1024





Case 1: Loading DIV2K dataset for training a SISR model.

   dataset = BasicImageDataset(
       ann_file='',
       metainfo=dict(
           dataset_type='div2k',
           task_name='sisr'),
       data_root='data/DIV2K',
       data_prefix=dict(
           gt='DIV2K_train_HR', img='DIV2K_train_LR_bicubic/X4'),
       filename_tmpl=dict(img='{}_x4', gt='{}'),
       pipeline=[])





Case 2: Loading places dataset for training an inpainting model.

   dataset = BasicImageDataset(
       ann_file='meta/Places365_train.txt',
       metainfo=dict(
           dataset_type='places365',
           task_name='inpainting'),
       data_root='data/places',
       data_prefix=dict(gt='train_set'),
       pipeline=[])





Case 3: Loading CelebA-HQ dataset for training an PGGAN.

dataset = BasicImageDataset(
        pipeline=[],
        data_root='./data/celebahq/imgs_1024')








BasicFramesDataset

BasicFramesDataset mmagic.datasets.BasicFramesDataset
General frames dataset designed for low-level vision tasks with frames, such as video super-resolution and video frame interpolation. The annotation file is optional.

If use annotation file, the annotation format can be shown as follows.

Case 1 (Vid4):

   calendar 41
   city 34
   foliage 49
   walk 47

Case 2 (REDS):

   000/00000000.png (720, 1280, 3)
   000/00000001.png (720, 1280, 3)

Case 3 (Vimeo90k):

   00001/0266 (256, 448, 3)
   00001/0268 (256, 448, 3)





Assume the file structure as the following:

mmagic (root)
├── mmagic
├── tools
├── configs
├── data
│   ├── Vid4
│   │   ├── BIx4
│   │   │   ├── city
│   │   │   │   ├── img1.png
│   │   ├── GT
│   │   │   ├── city
│   │   │   │   ├── img1.png
│   │   ├── meta_info_Vid4_GT.txt
│   ├── vimeo-triplet
│   │   ├── sequences
|   |   |   ├── 00001
│   │   │   │   ├── 0389
│   │   │   │   │   ├── img1.png
│   │   │   │   │   ├── img2.png
│   │   │   │   │   ├── img3.png
│   │   ├── tri_trainlist.txt





Case 1: Loading Vid4 dataset for training a VSR model.

dataset = BasicFramesDataset(
    ann_file='meta_info_Vid4_GT.txt',
    metainfo=dict(dataset_type='vid4', task_name='vsr'),
    data_root='data/Vid4',
    data_prefix=dict(img='BIx4', gt='GT'),
    pipeline=[],
    depth=2,
    num_input_frames=5)





Case 2: Loading Vimeo90k dataset for training a VFI model.

dataset = BasicFramesDataset(
    ann_file='tri_trainlist.txt',
    metainfo=dict(dataset_type='vimeo90k', task_name='vfi'),
    data_root='data/vimeo-triplet',
    data_prefix=dict(img='sequences', gt='sequences'),
    pipeline=[],
    depth=2,
    load_frames_list=dict(
        img=['img1.png', 'img3.png'], gt=['img2.png']))








BasicConditonalDataset

BasicConditonalDataset mmagic.datasets.BasicConditonalDataset is designed for conditional GANs (e.g., SAGAN, BigGAN). This dataset support load label for the annotation file. BasicConditonalDataset support three kinds of annotation as follow:


1. Annotation file read by line (e.g., txt)

Sample files structure:

    data_prefix/
    ├── folder_1
    │   ├── xxx.png
    │   ├── xxy.png
    │   └── ...
    └── folder_2
        ├── 123.png
        ├── nsdf3.png
        └── ...





Sample annotation file (the first column is the image path and the second column is the index of category):

    folder_1/xxx.png 0
    folder_1/xxy.png 1
    folder_2/123.png 5
    folder_2/nsdf3.png 3
    ...





Config example for ImageNet dataset:

dataset=dict(
    type='BasicConditionalDataset,
    data_root='./data/imagenet/',
    ann_file='meta/train.txt',
    data_prefix='train',
    pipeline=train_pipeline),








2. Dict-based annotation file (e.g., json):

Sample files structure:

    data_prefix/
    ├── folder_1
    │   ├── xxx.png
    │   ├── xxy.png
    │   └── ...
    └── folder_2
        ├── 123.png
        ├── nsdf3.png
        └── ...





Sample annotation file (the key is the image path and the value column
is the label):

    {
        "folder_1/xxx.png": [1, 2, 3, 4],
        "folder_1/xxy.png": [2, 4, 1, 0],
        "folder_2/123.png": [0, 9, 8, 1],
        "folder_2/nsdf3.png", [1, 0, 0, 2],
        ...
    }





Config example for EG3D (shapenet-car) dataset:

dataset = dict(
    type='BasicConditionalDataset',
    data_root='./data/eg3d/shapenet-car',
    ann_file='annotation.json',
    pipeline=train_pipeline)





In this kind of annotation, labels can be any type and not restricted to an index.




3. Folder-based annotation (no annotation file need):

Sample files structure:

    data_prefix/
    ├── class_x
    │   ├── xxx.png
    │   ├── xxy.png
    │   └── ...
    │       └── xxz.png
    └── class_y
        ├── 123.png
        ├── nsdf3.png
        ├── ...
        └── asd932_.png





If the annotation file is specified, the dataset will be generated by the first two ways, otherwise, try the third way.






ImageNet Dataset and CIFAR10 Dataset

ImageNet Dataset mmagic.datasets.ImageNet and CIFAR10 Datasetmmagic.datasets.CIFAR10 are datasets specific designed for ImageNet and CIFAR10 datasets. Both two datasets are encapsulation of BasicConditionalDataset. You can used them to load data from ImageNet dataset and CIFAR10 dataset easily.

Config example for ImageNet:

pipeline = [
    dict(type='LoadImageFromFile', key='img'),
    dict(type='RandomCropLongEdge', keys=['img']),
    dict(type='Resize', scale=(128, 128), keys=['img'], backend='pillow'),
    dict(type='Flip', keys=['img'], flip_ratio=0.5, direction='horizontal'),
    dict(type='PackInputs')
]

dataset=dict(
    type='ImageNet',
    data_root='./data/imagenet/',
    ann_file='meta/train.txt',
    data_prefix='train',
    pipeline=pipeline),





Config example for CIFAR10:

pipeline = [dict(type='PackInputs')]

dataset = dict(
    type='CIFAR10',
    data_root='./data',
    data_prefix='cifar10',
    test_mode=False,
    pipeline=pipeline)








AdobeComp1kDataset

AdobeComp1kDataset mmagic.datasets.AdobeComp1kDataset
Adobe composition-1k dataset.

The dataset loads (alpha, fg, bg) data and apply specified transforms to
the data. You could specify whether composite merged image online or load
composited merged image in pipeline.

Example for online comp-1k dataset:

[
   {
       "alpha": 'alpha/000.png',
       "fg": 'fg/000.png',
       "bg": 'bg/000.png'
   },
   {
       "alpha": 'alpha/001.png',
       "fg": 'fg/001.png',
       "bg": 'bg/001.png'
   },
]





Example for offline comp-1k dataset:

[
  {
      "alpha": 'alpha/000.png',
      "merged": 'merged/000.png',
      "fg": 'fg/000.png',
      "bg": 'bg/000.png'
  },
  {
      "alpha": 'alpha/001.png',
      "merged": 'merged/001.png',
      "fg": 'fg/001.png',
      "bg": 'bg/001.png'
  },
]








GrowScaleImgDataset

GrowScaleImgDataset is designed for dynamic GAN models (e.g., PGGAN and StyleGANv1).
In this dataset, we support switching the data root during training to load training images of different resolutions.
This procedure is implemented by GrowScaleImgDataset.update_annotations and is called by PGGANFetchDataHook.before_train_iter in the training process.

def update_annotations(self, curr_scale):
    # determine if the data root needs to be updated
    if curr_scale == self._actual_curr_scale:
        return False

    # fetch new data root by resolution (scale)
    for scale in self._img_scales:
        if curr_scale <= scale:
            self._curr_scale = scale
            break
        if scale == self._img_scales[-1]:
            assert RuntimeError(
                f'Cannot find a suitable scale for {curr_scale}')
    self._actual_curr_scale = curr_scale
    self.data_root = self.data_roots[str(self._curr_scale)]

    # reload the data list with new data root
    self.load_data_list()

    # print basic dataset information to check the validity
    print_log('Update Dataset: ' + repr(self), 'current')
    return True








SinGANDataset

SinGANDataset is designed for SinGAN’s training.
In SinGAN’s training, we do not iterate the images in the dataset but return a consistent preprocessed image dict.

Therefore, we bypass the default data loading logic of BaseDataset because we do not need to load the corresponding image data based on the given index.

def load_data_list(self, min_size, max_size, scale_factor_init):
    # load single image
    real = mmcv.imread(self.data_root)
    self.reals, self.scale_factor, self.stop_scale = create_real_pyramid(
        real, min_size, max_size, scale_factor_init)

    self.data_dict = {}

    # generate multi scale image
    for i, real in enumerate(self.reals):
        self.data_dict[f'real_scale{i}'] = real

    self.data_dict['input_sample'] = np.zeros_like(
        self.data_dict['real_scale0']).astype(np.float32)

def __getitem__(self, index):
    # directly return the transformed data dict
    return self.pipeline(self.data_dict)








PairedImageDataset

PairedImageDataset is designed for translation models that needs paired training data (e.g., Pix2Pix).
The directory structure is shown below. Each image files are the concatenation of the image pair.

./data/dataset_name/
├── test
│   └── XXX.jpg
└── train
    └── XXX.jpg





In PairedImageDataset, we scan the file list in load_data_list and save path in pair_path field to fit the LoadPairedImageFromFile transformation.

def load_data_list(self):
    data_infos = []
    pair_paths = sorted(self.scan_folder(self.data_root))
    for pair_path in pair_paths:
        # save path in the specific field
        data_infos.append(dict(pair_path=pair_path))

    return data_infos








UnpairedImageDataset

UnpairedImageDataset is designed for translation models that do not need paired data (e.g., CycleGAN). The directory structure is shown below.

./data/dataset_name/
├── testA
│   └── XXX.jpg
├── testB
│   └── XXX.jpg
├── trainA
│   └── XXX.jpg
└── trainB
    └── XXX.jpg






In this dataset, we overwrite __getitem__ function to load random image pair in the training process.

def __getitem__(self, idx):
    if not self.test_mode:
        return self.prepare_train_data(idx)

    return self.prepare_test_data(idx)

def prepare_train_data(self, idx):
    img_a_path = self.data_infos_a[idx % self.len_a]['path']
    idx_b = np.random.randint(0, self.len_b)
    img_b_path = self.data_infos_b[idx_b]['path']
    results = dict()
    results[f'img_{self.domain_a}_path'] = img_a_path
    results[f'img_{self.domain_b}_path'] = img_b_path
    return self.pipeline(results)

def prepare_test_data(self, idx):
    img_a_path = self.data_infos_a[idx % self.len_a]['path']
    img_b_path = self.data_infos_b[idx % self.len_b]['path']
    results = dict()
    results[f'img_{self.domain_a}_path'] = img_a_path
    results[f'img_{self.domain_b}_path'] = img_b_path
    return self.pipeline(results)










Design a new dataset

If you want to create a dataset for a new low level CV task (e.g. denoise, derain, defog, and de-reflection) or existing dataset format doesn’t meet your need, you can reorganize new data formats to existing format.

Or create a new dataset in mmagic/datasets to load the data.

Inheriting from the base class of datasets such as BasicImageDataset and BasicFramesDataset will make it easier to create a new dataset.

And you can create a new dataset inherited from BaseDataset [https://github.com/open-mmlab/mmengine/blob/main/mmengine/dataset/base_dataset.py] which is the base class of datasets in MMEngine [https://github.com/open-mmlab/mmengine].

Here is an example of creating a dataset for video frame interpolation:

from .basic_frames_dataset import BasicFramesDataset
from mmagic.registry import DATASETS


@DATASETS.register_module()
class NewVFIDataset(BasicFramesDataset):
    """Introduce the dataset

    Examples of file structure.

    Args:
        pipeline (list[dict | callable]): A sequence of data transformations.
        folder (str | :obj:`Path`): Path to the folder.
        ann_file (str | :obj:`Path`): Path to the annotation file.
        test_mode (bool): Store `True` when building test dataset.
            Default: `False`.
    """

    def __init__(self, ann_file, metainfo, data_root, data_prefix,
                    pipeline, test_mode=False):
        super().__init__(ann_file, metainfo, data_root, data_prefix,
                            pipeline, test_mode)
        self.data_infos = self.load_annotations()

    def load_annotations(self):
        """Load annoations for the dataset.

        Returns:
            list[dict]: A list of dicts for paired paths and other information.
        """
        data_infos = []
        ...
        return data_infos






Welcome to submit new dataset classes to MMagic [https://github.com/open-mmlab/mmagic/compare].


Repeat dataset

We use RepeatDataset [https://github.com/open-mmlab/mmengine/blob/main/mmengine/dataset/dataset_wrapper.py] as wrapper to repeat the dataset.
For example, suppose the original dataset is Dataset_A, to repeat it, the config looks like the following

dataset_A_train = dict(
        type='RepeatDataset',
        times=N,
        dataset=dict(  # This is the original config of Dataset_A
            type='Dataset_A',
            ...
            pipeline=train_pipeline
        )
    )





You may refer to tutorial in MMEngine [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/basedataset.md].
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How to design your own data transforms

In this tutorial, we introduce the design of transforms pipeline in MMagic.

The structure of this guide are as follows:


	How to design your own data transforms


	Data pipelines in MMagic


	A simple example of data transform


	An example of BasicVSR


	An example of Pix2Pix






	Supported transforms in MMagic


	Data loading


	Pre-processing


	Formatting






	Extend and use custom pipelines


	A simple example of MyTransform


	An example of flipping













Data pipelines in MMagic

Following typical conventions, we use Dataset and DataLoader for data loading with multiple workers. Dataset returns a dict of data items corresponding the arguments of models’ forward method.

The data preparation pipeline and the dataset is decomposed. Usually a dataset defines how to process the annotations and a data pipeline defines all the steps to prepare a data dict.

A pipeline consists of a sequence of operations. Each operation takes a dict as input and also output a dict for the next transform.

The operations are categorized into data loading, pre-processing, and formatting

In MMagic, all data transformations are inherited from BaseTransform.
The input and output types of transformations are both dict.


A simple example of data transform

>>> from mmagic.transforms import LoadPairedImageFromFile
>>> transforms = LoadPairedImageFromFile(
>>>     key='pair',
>>>     domain_a='horse',
>>>     domain_b='zebra',
>>>     flag='color'),
>>> data_dict = {'pair_path': './data/pix2pix/facades/train/1.png'}
>>> data_dict = transforms(data_dict)
>>> print(data_dict.keys())
dict_keys(['pair_path', 'pair', 'pair_ori_shape', 'img_mask', 'img_photo', 'img_mask_path', 'img_photo_path', 'img_mask_ori_shape', 'img_photo_ori_shape'])





Generally, the last step of the transforms pipeline must be PackInputs.
PackInputs will pack the processed data into a dict containing two fields: inputs and data_samples.
inputs is the variable you want to use as the model’s input, which can be the type of torch.Tensor, dict of torch.Tensor, or any type you want.
data_samples is a list of DataSample. Each DataSample contains groundtruth and necessary information for corresponding input.




An example of BasicVSR

Here is a pipeline example for BasicVSR.

train_pipeline = [
    dict(type='LoadImageFromFile', key='img', channel_order='rgb'),
    dict(type='LoadImageFromFile', key='gt', channel_order='rgb'),
    dict(type='SetValues', dictionary=dict(scale=scale)),
    dict(type='PairedRandomCrop', gt_patch_size=256),
    dict(
        type='Flip',
        keys=['img', 'gt'],
        flip_ratio=0.5,
        direction='horizontal'),
    dict(
        type='Flip', keys=['img', 'gt'], flip_ratio=0.5, direction='vertical'),
    dict(type='RandomTransposeHW', keys=['img', 'gt'], transpose_ratio=0.5),
    dict(type='MirrorSequence', keys=['img', 'gt']),
    dict(type='PackInputs')
]

val_pipeline = [
    dict(type='GenerateSegmentIndices', interval_list=[1]),
    dict(type='LoadImageFromFile', key='img', channel_order='rgb'),
    dict(type='LoadImageFromFile', key='gt', channel_order='rgb'),
    dict(type='PackInputs')
]

test_pipeline = [
    dict(type='LoadImageFromFile', key='img', channel_order='rgb'),
    dict(type='LoadImageFromFile', key='gt', channel_order='rgb'),
    dict(type='MirrorSequence', keys=['img']),
    dict(type='PackInputs')
]





For each operation, we list the related dict fields that are added/updated/removed, the dict fields marked by ‘*’ are optional.




An example of Pix2Pix

Here is a pipeline example for Pix2Pix training on aerial2maps dataset.

source_domain = 'aerial'
target_domain = 'map'

pipeline = [
    dict(
        type='LoadPairedImageFromFile',
        io_backend='disk',
        key='pair',
        domain_a=domain_a,
        domain_b=domain_b,
        flag='color'),
    dict(
        type='TransformBroadcaster',
        mapping={'img': [f'img_{domain_a}', f'img_{domain_b}']},
        auto_remap=True,
        share_random_params=True,
        transforms=[
            dict(
                type='mmagic.Resize', scale=(286, 286),
                interpolation='bicubic'),
            dict(type='mmagic.FixedCrop', crop_size=(256, 256))
        ]),
    dict(
        type='Flip',
        keys=[f'img_{domain_a}', f'img_{domain_b}'],
        direction='horizontal'),
    dict(
        type='PackInputs',
        keys=[f'img_{domain_a}', f'img_{domain_b}', 'pair'])










Supported transforms in MMagic


Data loading


   
      
         	Transform
         	Modification of Results' keys
      

   
   
      
         	
            LoadImageFromFile
         
         	
            - add: img, img_path, img_ori_shape, \*ori_img
         
      

      
         	
            RandomLoadResizeBg
         
         	
            - add: bg
         
      

      
         	
            LoadMask
         
         	
            - add: mask
         
      

      
         	
            GetSpatialDiscountMask
         
         	
            - add: discount_mask
         
      

   





Pre-processing


   
      
         	Transform
         	Modification of Results' keys
      

   
   
      
         	
            Resize
         
         	
            - add: scale_factor, keep_ratio, interpolation, backend
            - update: specified by keys
         
      

      
         	
            MATLABLikeResize
         
         	
            - add: scale, output_shape
            - update: specified by keys
         
      

      
         	
            RandomRotation
         
         	
            - add: degrees
            - update: specified by keys
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How to design your own loss functions

losses are registered as LOSSES in MMagic.
Customizing losses is similar to customizing any other model.
This section is mainly for clarifying the design of loss modules in MMagic.
Importantly, when writing your own loss modules, you should follow the same design,
so that the new loss module can be adopted in our framework without extra effort.

This guides includes:


	How to design your own loss functions


	Introduction to supported losses


	Design a new loss function


	An example of MSELoss


	An example of DiscShiftLoss


	An example of GANWithCustomizedLoss






	Available losses


	regular losses


	losses components













Introduction to supported losses

For convenient usage, you can directly use default loss calculation process we set for concrete algorithms like lsgan, biggan, styleganv2 etc.
Take stylegan2 as an example, we use R1 gradient penalty and generator path length regularization as configurable losses, and users can adjust
related arguments like r1_loss_weight and g_reg_weight.

# stylegan2_base.py
loss_config = dict(
    r1_loss_weight=10. / 2. * d_reg_interval,
    r1_interval=d_reg_interval,
    norm_mode='HWC',
    g_reg_interval=g_reg_interval,
    g_reg_weight=2. * g_reg_interval,
    pl_batch_shrink=2)

model = dict(
    type='StyleGAN2',
    xxx,
    loss_config=loss_config)








Design a new loss function


An example of MSELoss

In general, to implement a loss module, we will write a function implementation and then wrap it with a class implementation. Take the MSELoss as an example:

@masked_loss
def mse_loss(pred, target):
    return F.mse_loss(pred, target, reduction='none')

@LOSSES.register_module()
class MSELoss(nn.Module):

    def __init__(self, loss_weight=1.0, reduction='mean', sample_wise=False):
        # codes can be found in ``mmagic/models/losses/pixelwise_loss.py``

    def forward(self, pred, target, weight=None, **kwargs):
        # codes can be found in ``mmagic/models/losses/pixelwise_loss.py``





Given the definition of the loss, we can now use the loss by simply defining it in the configuration file:

pixel_loss=dict(type='MSELoss', loss_weight=1.0, reduction='mean')





Note that pixel_loss above must be defined in the model. Please refer to customize_models for more details. Similar to model customization, in order to use your customized loss, you need to import the loss in mmagic/models/losses/__init__.py after writing it.




An example of DiscShiftLoss

In general, to implement a loss module, we will write a function implementation and then wrap it with a class implementation.
However, in MMagic, we provide another unified interface data_info for users to define the mapping between the input argument and data items.

@weighted_loss
def disc_shift_loss(pred):
    return pred**2

@MODULES.register_module()
class DiscShiftLoss(nn.Module):

    def __init__(self, loss_weight=1.0, data_info=None):
        super(DiscShiftLoss, self).__init__()
        # codes can be found in ``mmagic/models/losses/disc_auxiliary_loss.py``

    def forward(self, *args, **kwargs):
        # codes can be found in ``mmagic/models/losses/disc_auxiliary_loss.py``





The goal of this design for loss modules is to allow for using it automatically in the generative models (MODELS), without other complex codes to define the mapping between data and keyword arguments. Thus, different from other frameworks in OpenMMLab, our loss modules contain a special keyword, data_info, which is a dictionary defining the mapping between the input arguments and data from the generative models. Taking the DiscShiftLoss as an example, when writing the config file, users may use this loss as follows:

dict(type='DiscShiftLoss',
    loss_weight=0.001 * 0.5,
    data_info=dict(pred='disc_pred_real')





The information in data_info tells the module to use the disc_pred_real data as the input tensor for pred arguments. Once the data_info is not None, our loss module will automatically build up the computational graph.

@MODULES.register_module()
class DiscShiftLoss(nn.Module):

    def __init__(self, loss_weight=1.0, data_info=None):
        super(DiscShiftLoss, self).__init__()
        self.loss_weight = loss_weight
        self.data_info = data_info

    def forward(self, *args, **kwargs):
        # use data_info to build computational path
        if self.data_info is not None:
            # parse the args and kwargs
            if len(args) == 1:
                assert isinstance(args[0], dict), (
                    'You should offer a dictionary containing network outputs '
                    'for building up computational graph of this loss module.')
                outputs_dict = args[0]
            elif 'outputs_dict' in kwargs:
                assert len(args) == 0, (
                    'If the outputs dict is given in keyworded arguments, no'
                    ' further non-keyworded arguments should be offered.')
                outputs_dict = kwargs.pop('outputs_dict')
            else:
                raise NotImplementedError(
                    'Cannot parsing your arguments passed to this loss module.'
                    ' Please check the usage of this module')
            # link the outputs with loss input args according to self.data_info
            loss_input_dict = {
                k: outputs_dict[v]
                for k, v in self.data_info.items()
            }
            kwargs.update(loss_input_dict)
            kwargs.update(dict(weight=self.loss_weight))
            return disc_shift_loss(**kwargs)
        else:
            # if you have not define how to build computational graph, this
            # module will just directly return the loss as usual.
            return disc_shift_loss(*args, weight=self.loss_weight, **kwargs)

    @staticmethod
    def loss_name():
        return 'loss_disc_shift'






As shown in this part of codes, once users set the data_info, the loss module will receive a dictionary containing all of the necessary data and modules, which is provided by the MODELS in the training procedure. If this dictionary is given as a non-keyword argument, it should be offered as the first argument. If you are using a keyword argument, please name it as outputs_dict.




An example of GANWithCustomizedLoss

To build the computational graph, the generative models have to provide a dictionary containing all kinds of data. Having a close look at any generative model, you will find that we collect all kinds of features and modules into a dictionary. We provide a customized GANWithCustomizedLoss here to show the process.

class GANWithCustomizedLoss(BaseModel):

    def __init__(self, gan_loss, disc_auxiliary_loss, gen_auxiliary_loss,
                 *args, **kwargs):
        # ...
        if gan_loss is not None:
            self.gan_loss = MODULES.build(gan_loss)
        else:
            self.gan_loss = None

        if disc_auxiliary_loss:
            self.disc_auxiliary_losses = MODULES.build(disc_auxiliary_loss)
            if not isinstance(self.disc_auxiliary_losses, nn.ModuleList):
                self.disc_auxiliary_losses = nn.ModuleList(
                    [self.disc_auxiliary_losses])
        else:
            self.disc_auxiliary_loss = None

        if gen_auxiliary_loss:
            self.gen_auxiliary_losses = MODULES.build(gen_auxiliary_loss)
            if not isinstance(self.gen_auxiliary_losses, nn.ModuleList):
                self.gen_auxiliary_losses = nn.ModuleList(
                    [self.gen_auxiliary_losses])
        else:
            self.gen_auxiliary_losses = None

    def train_step(self, data: dict,
                   optim_wrapper: OptimWrapperDict) -> Dict[str, Tensor]:
        # ...

        # get data dict to compute losses for disc
        data_dict_ = dict(
            iteration=curr_iter,
            gen=self.generator,
            disc=self.discriminator,
            disc_pred_fake=disc_pred_fake,
            disc_pred_real=disc_pred_real,
            fake_imgs=fake_imgs,
            real_imgs=real_imgs)

        loss_disc, log_vars_disc = self._get_disc_loss(data_dict_)

        # ...

    def _get_disc_loss(self, outputs_dict):
        # Construct losses dict. If you hope some items to be included in the
        # computational graph, you have to add 'loss' in its name. Otherwise,
        # items without 'loss' in their name will just be used to print
        # information.
        losses_dict = {}
        # gan loss
        losses_dict['loss_disc_fake'] = self.gan_loss(
            outputs_dict['disc_pred_fake'], target_is_real=False, is_disc=True)
        losses_dict['loss_disc_real'] = self.gan_loss(
            outputs_dict['disc_pred_real'], target_is_real=True, is_disc=True)

        # disc auxiliary loss
        if self.with_disc_auxiliary_loss:
            for loss_module in self.disc_auxiliary_losses:
                loss_ = loss_module(outputs_dict)
                if loss_ is None:
                    continue

                # the `loss_name()` function return name as 'loss_xxx'
                if loss_module.loss_name() in losses_dict:
                    losses_dict[loss_module.loss_name(
                    )] = losses_dict[loss_module.loss_name()] + loss_
                else:
                    losses_dict[loss_module.loss_name()] = loss_
        loss, log_var = self.parse_losses(losses_dict)

        return loss, log_var






Here, the _get_disc_loss will help to combine all kinds of losses automatically.

Therefore, as long as users design the loss module with the same rules, any kind of loss can be inserted in the training of generative models,
without other modifications in the code of models. What you only need to do is just defining the data_info in the config files.






Available losses

We list available losses with examples in configs as follows.


regular losses



  
    	Method
    	class
    	Example
  



  
    	vanilla gan loss
    	mmagic.models.GANLoss
	
# dic gan
loss_gan=dict(
    type='GANLoss',
    gan_type='vanilla',
    loss_weight=0.001,
)









  
    	lsgan loss
    	mmagic.models.GANLoss
	



  
    	wgan loss
    	mmagic.models.GANLoss
    	
# deepfillv1
loss_gan=dict(
    type='GANLoss',
    gan_type='wgan',
    loss_weight=0.0001,
)








  
    	hinge loss
    	mmagic.models.GANLoss
    	
# deepfillv2
loss_gan=dict(
    type='GANLoss',
    gan_type='hinge',
    loss_weight=0.1,
)








  
    	smgan loss
    	mmagic.models.GANLoss
	
# aot-gan
loss_gan=dict(
    type='GANLoss',
    gan_type='smgan',
    loss_weight=0.01,
)








  
    	gradient penalty
    	mmagic.models.GradientPenaltyLoss
    	
# deepfillv1
loss_gp=dict(type='GradientPenaltyLoss', loss_weight=10.)








  
    	discriminator shift loss
    	mmagic.models.DiscShiftLoss
    	
# deepfillv1
loss_disc_shift=dict(type='DiscShiftLoss', loss_weight=0.001)









  
    	clip loss
    	mmagic.models.CLIPLoss
    	


  
    	L1 composition loss
    	mmagic.models.L1CompositionLoss
    	


  
    	MSE composition loss
    	mmagic.models.MSECompositionLoss
    	


  
    	charbonnier composition loss
    	mmagic.models.CharbonnierCompLoss
    	
# dim
loss_comp=dict(type='CharbonnierCompLoss', loss_weight=0.5)








  
    	face id Loss
    	mmagic.models.FaceIdLoss
    	


  
    	light cnn feature loss
    	mmagic.models.LightCNNFeatureLoss
    	
# dic gan
feature_loss=dict(
    type='LightCNNFeatureLoss',
    pretrained=pretrained_light_cnn,
    loss_weight=0.1,
    criterion='l1')








  
    	gradient loss
    	mmagic.models.GradientLoss
    	


  
    	l1 Loss
    	mmagic.models.L1Loss
    	
# dic gan
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean')








  
    	mse loss
    	mmagic.models.MSELoss
    	
# dic gan
align_loss=dict(type='MSELoss', loss_weight=0.1, reduction='mean')








  
    	charbonnier loss
    	mmagic.models.CharbonnierLoss
    	
# dim
loss_alpha=dict(type='CharbonnierLoss', loss_weight=0.5)








  
    	masked total variation loss
    	mmagic.models.MaskedTVLoss
    	
# partial conv
loss_tv=dict(
    type='MaskedTVLoss',
    loss_weight=0.1
)









  
    	perceptual loss
    	mmagic.models.PerceptualLoss
    	
# real_basicvsr
perceptual_loss=dict(
    type='PerceptualLoss',
    layer_weights={
        '2': 0.1,
        '7': 0.1,
        '16': 1.0,
        '25': 1.0,
        '34': 1.0,
    },
    vgg_type='vgg19',
    perceptual_weight=1.0,
    style_weight=0,
    norm_img=False)









  
    	transferal perceptual loss
    	mmagic.models.TransferalPerceptualLoss
    	
# ttsr
transferal_perceptual_loss=dict(
    type='TransferalPerceptualLoss',
    loss_weight=1e-2,
    use_attention=False,
    criterion='mse')







  







losses components

For GANWithCustomizedLoss, we provide several components to build customized loss.




	Method
	class





	clip loss component
	mmagic.models.CLIPLossComps



	discriminator shift loss component
	mmagic.models. DiscShiftLossComps



	gradient penalty loss component
	mmagic.models. GradientPenaltyLossComps



	r1 gradient penalty component
	mmagic.models. R1GradientPenaltyComps



	face Id loss component
	mmagic.models. FaceIdLossComps



	gan loss component
	mmagic.models. GANLossComps



	generator path regularizer component
	mmagic.models.GeneratorPathRegularizerComps
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Frequently asked questions

We list some common troubles faced by many users and their corresponding
solutions here. Feel free to enrich the list if you find any frequent issues
and have ways to help others to solve them. If the contents here do not cover
your issue, please create an issue using the
provided templates [https://github.com/open-mmlab/mmagic/issues/new/choose]
and make sure you fill in all required information in the template.


FAQ

Q1: “xxx: ‘yyy is not in the zzz registry’”.

A1: The registry mechanism will be triggered only when the file of the module is imported. So you need to import that file somewhere.

Q2: What’s the folder structure of xxx dataset?

A2: You can make sure the folder structure is correct following tutorials of dataset preparation.

Q3: How to use LMDB data to train the model?

A3:  You can use scripts in tools/data to make LMDB files. More details are shown in tutorials of dataset preparation.

Q4: Why MMCV==xxx is used but incompatible is raised when import I try to import mmgen?

A4:
This is because the version of MMCV and MMGeneration are incompatible. Compatible MMGeneration and MMCV versions are shown as below. Please choose the correct version of MMCV to avoid installation issues.




	MMGeneration version
	MMCV version





	master
	mmcv-full>=2.0.0





Note: You need to run pip uninstall mmcv first if you have mmcv installed.
If mmcv and mmcv-full are both installed, there will be ModuleNotFoundError.

Q5: How can I ignore some fields in the base configs?

A5:
Sometimes, you may set _delete_=True to ignore some of fields in base configs.
You may refer to MMEngine [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/config.md#delete-key-in-dict] for simple illustration.

You may have a careful look at this tutorial [https://github.com/open-mmlab/mmengine/blob/main/docs/en/advanced_tutorials/config.md] for better understanding of this feature.

Q6:: How can I use intermediate variables in configs?

A6:
Some intermediate variables are used in the config files, like train_pipeline/test_pipeline in datasets.
It’s worth noting that when modifying intermediate variables in the children configs, users need to pass the intermediate variables into corresponding fields again.
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Overview


	Number of checkpoints: 223


	Number of configs: 251


	Number of papers: 60


	ALGORITHM: 61






	Tasks:


	text2video


	inpainting


	video super-resolution


	conditional gans


	video interpolation


	text2image


	controlnet_animation


	image2image


	unconditional gans


	deblurring


	image super-resolution


	diffusers pipeline


	matting


	draggan


	3d-aware generation


	image generation


	colorization


	image restoration


	deraining


	denoising


	internal learning


	image denoising


	jpeg compression artifact reduction
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text2video


Summary


	Number of checkpoints: 7


	Number of configs: 7


	Number of papers: 1


	ALGORITHM: 1











AnimateDiff (2023)


AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning [https://arxiv.org/abs/2307.04725]





Task: Text2Video






Abstract


With the advance of text-to-image models (e.g., Stable Diffusion) and corresponding personalization techniques such as DreamBooth and LoRA, everyone can manifest their imagination into high-quality images at an affordable cost. Subsequently, there is a great demand for image animation techniques to further combine generated static images with motion dynamics. In this report, we propose a practical framework to animate most of the existing personalized text-to-image models once and for all, saving efforts in model-specific tuning. At the core of the proposed framework is to insert a newly initialized motion modeling module into the frozen text-to-image model and train it on video clips to distill reasonable motion priors. Once trained, by simply injecting this motion modeling module, all personalized versions derived from the same base T2I readily become text-driven models that produce diverse and personalized animated images. We conduct our evaluation on several public representative personalized text-to-image models across anime pictures and realistic photographs, and demonstrate that our proposed framework helps these models generate temporally smooth animation clips while preserving the domain and diversity of their outputs.


[image: 512]




Pretrained models

We use Stable Diffusion’s weights provided by HuggingFace Diffusers. You do not have to download the weights manually. If you use Diffusers wrapper, the weights will be downloaded automatically.

This model has several weights including vae, unet and clip. You should download the weights from stable-diffusion-1.5 [https://huggingface.co/runwayml/stable-diffusion-v1-5] and change the ‘pretrained_model_path’ in config to the weights dir.




	Model
	Dataset
	Download





	ToonYou
	-
	model



	Lyriel
	-
	model



	RcnzCartoon
	-
	model



	MajicMix
	-
	model



	RealisticVision
	-
	model



	MotionModel_v1-5_v2
	WebVid
	model



	MotionModel_v1-5_2Mval
	WebVid
	model



	MotionModel_v1-5_10Mval
	WebVid
	model





Latest models could be looked up on OpenXLab_AnimateDiff [https://openxlab.org.cn/models/detail/ElliotQi/AnimateDiff].




Quick Start

Running the following codes, you can get a text-generated image.


Reccomendation

It’s highly recommended to install xformers [https://github.com/facebookresearch/xformers]. It would save about 20G memory for 512*512 resolution generation.




Steps


	Download ToonYou [https://civitai.com/api/download/models/78775] and MotionModule checkpoint




#!/bin/bash

mkdir models && cd models
mkdir Motion_Module && mkdir DreamBooth_LoRA
gdown 1RqkQuGPaCO5sGZ6V6KZ-jUWmsRu48Kdq -O Motion_Module/
gdown 1ql0g_Ys4UCz2RnokYlBjyOYPbttbIpbu -O models/Motion_Module/
wget https://civitai.com/api/download/models/78775 -P DreamBooth_LoRA/ --content-disposition --no-check-certificate






	Modify the config file in configs/animatediff/animatediff_ToonYou.py




    models_path = {Your Checkpoints Path}
    motion_module_cfg=dict(
        path={Your MotionModule Path}
    ),
    dream_booth_lora_cfg=dict(
        type='ToonYou',
        path={Your Dreambooth_Lora Path},
        steps=25,
        guidance_scale=7.5)






	Enjoy Text2Video world




from mmengine import Config

from mmagic.registry import MODELS
from mmagic.utils import register_all_modules

import os
import torch
from pathlib import Path
import datetime
from mmagic.models.editors.animatediff import save_videos_grid



register_all_modules()

cfg = Config.fromfile('configs/animatediff/animatediff_ToonYou.py')
animatediff = MODELS.build(cfg.model).cuda()
prompts = [
    "best quality, masterpiece, 1girl, looking at viewer, blurry background, upper body, contemporary, dress",

    "masterpiece, best quality, 1girl, solo, cherry blossoms, hanami, pink flower, white flower, spring season, wisteria, petals, flower, plum blossoms, outdoors, falling petals, white hair, black eyes,",

    "best quality, masterpiece, 1boy, formal, abstract, looking at viewer, masculine, marble pattern",

    "best quality, masterpiece, 1girl, cloudy sky, dandelion, contrapposto, alternate hairstyle,"
]

negative_prompts = [
    "",
    "badhandv4,easynegative,ng_deepnegative_v1_75t,verybadimagenegative_v1.3, bad-artist, bad_prompt_version2-neg, teeth",
    "",
    "",
]

sample_idx = 0
random_seeds = cfg.randomness['seed']
random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds)
samples = []
time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
savedir = f"samples/{Path(cfg.model['dream_booth_lora_cfg']['type']).stem}-{time_str}"
os.makedirs(savedir)
for prompt_idx, (prompt, n_prompt, random_seed) in enumerate(zip(prompts, negative_prompts, random_seeds)):
    output_dict = animatediff.infer(prompt,negative_prompt=n_prompt, video_length=16, height=256, width=256, seed=random_seed,num_inference_steps=cfg.model['dream_booth_lora_cfg']['steps'])
    sample = output_dict['samples']
    prompt = "-".join((prompt.replace("/", "").split(" ")[:10]))
    save_videos_grid(sample, f"{savedir}/sample/{sample_idx}-{prompt}.gif")
    print(f"save to {savedir}/sample/{prompt}.gif")
    samples.append(sample)
    sample_idx += 1

samples = torch.concat(samples)
save_videos_grid(samples, f"{savedir}/sample.gif", n_rows=4)










Prompts for other config


	Lyriel




  prompt:
    - "dark shot, epic realistic, portrait of halo, sunglasses, blue eyes, tartan scarf, white hair by atey ghailan, by greg rutkowski, by greg tocchini, by james gilleard, by joe fenton, by kaethe butcher, gradient yellow, black, brown and magenta color scheme, grunge aesthetic!!! graffiti tag wall background, art by greg rutkowski and artgerm, soft cinematic light, adobe lightroom, photolab, hdr, intricate, highly detailed, depth of field, faded, neutral colors, hdr, muted colors, hyperdetailed, artstation, cinematic, warm lights, dramatic light, intricate details, complex background, rutkowski, teal and orange"
    - "A forbidden castle high up in the mountains, pixel art, intricate details2, hdr, intricate details, hyperdetailed5, natural skin texture, hyperrealism, soft light, sharp, game art, key visual, surreal"
    - "dark theme, medieval portrait of a man sharp features, grim, cold stare, dark colors, Volumetric lighting, baroque oil painting by Greg Rutkowski, Artgerm, WLOP, Alphonse Mucha dynamic lighting hyperdetailed intricately detailed, hdr, muted colors, complex background, hyperrealism, hyperdetailed, amandine van ray"
    - "As I have gone alone in there and with my treasures bold, I can keep my secret where and hint of riches new and old. Begin it where warm waters halt and take it in a canyon down, not far but too far to walk, put in below the home of brown."

  n_prompt:
    - "3d, cartoon, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, young, loli, elf, 3d, illustration"
    - "3d, cartoon, anime, sketches, worst quality, low quality, normal quality, lowres, normal quality, monochrome, grayscale, skin spots, acnes, skin blemishes, bad anatomy, girl, loli, young, large breasts, red eyes, muscular"
    - "dof, grayscale, black and white, bw, 3d, cartoon, anime, sketches, worst quality, low quality, normal quality, lowres, normal quality, monochrome, grayscale, skin spots, acnes, skin blemishes, bad anatomy, girl, loli, young, large breasts, red eyes, muscular,badhandsv5-neg, By bad artist -neg 1, monochrome"
    - "holding an item, cowboy, hat, cartoon, 3d, disfigured, bad art, deformed,extra limbs,close up,b&w, weird colors, blurry, duplicate, morbid, mutilated, [out of frame], extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, out of frame, ugly, extra limbs, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck, Photoshop, video game, ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, mutation, mutated, extra limbs, extra legs, extra arms, disfigured, deformed, cross-eye, body out of frame, blurry, bad art, bad anatomy, 3d render"






	RcnzCartoon




prompt:
    - "Jane Eyre with headphones, natural skin texture,4mm,k textures, soft cinematic light, adobe lightroom, photolab, hdr, intricate, elegant, highly detailed, sharp focus, cinematic look, soothing tones, insane details, intricate details, hyperdetailed, low contrast, soft cinematic light, dim colors, exposure blend, hdr, faded"
    - "close up Portrait photo of muscular bearded guy in a worn mech suit, light bokeh, intricate, steel metal [rust], elegant, sharp focus, photo by greg rutkowski, soft lighting, vibrant colors, masterpiece, streets, detailed face"
    - "absurdres, photorealistic, masterpiece, a 30 year old man with gold framed, aviator reading glasses and a black hooded jacket and a beard, professional photo, a character portrait, altermodern, detailed eyes, detailed lips, detailed face, grey eyes"
    - "a golden labrador, warm vibrant colours, natural lighting, dappled lighting, diffused lighting, absurdres, highres,k, uhd, hdr, rtx, unreal, octane render, RAW photo, photorealistic, global illumination, subsurface scattering"

  n_prompt:
    - "deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation"
    - "nude, cross eyed, tongue, open mouth, inside, 3d, cartoon, anime, sketches, worst quality, low quality, normal quality, lowres, normal quality, monochrome, grayscale, skin spots, acnes, skin blemishes, bad anatomy, red eyes, muscular"
    - "easynegative, cartoon, anime, sketches, necklace, earrings worst quality, low quality, normal quality, bad anatomy, bad hands, shiny skin, error, missing fingers, extra digit, fewer digits, jpeg artifacts, signature, watermark, username, blurry, chubby, anorectic, bad eyes, old, wrinkled skin, red skin, photograph By bad artist -neg, big eyes, muscular face,"
    - "beard, EasyNegative, lowres, chromatic aberration, depth of field, motion blur, blurry, bokeh, bad quality, worst quality, multiple arms, badhand"






	MajicMix




prompt:
    - "1girl, offshoulder, light smile, shiny skin best quality, masterpiece, photorealistic"
    - "best quality, masterpiece, photorealistic, 1boy, 50 years old beard, dramatic lighting"
    - "best quality, masterpiece, photorealistic, 1girl, light smile, shirt with collars, waist up, dramatic lighting, from below"
    - "male, man, beard, bodybuilder, skinhead,cold face, tough guy, cowboyshot, tattoo, french windows, luxury hotel masterpiece, best quality, photorealistic"

  n_prompt:
    - "ng_deepnegative_v1_75t, badhandv4, worst quality, low quality, normal quality, lowres, bad anatomy, bad hands, watermark, moles"
    - "nsfw, ng_deepnegative_v1_75t,badhandv4, worst quality, low quality, normal quality, lowres,watermark, monochrome"
    - "nsfw, ng_deepnegative_v1_75t,badhandv4, worst quality, low quality, normal quality, lowres,watermark, monochrome"
    - "nude, nsfw, ng_deepnegative_v1_75t, badhandv4, worst quality, low quality, normal quality, lowres, bad anatomy, bad hands, monochrome, grayscale watermark, moles, people"






	Realistic & Realistic_v2 (same prompts with different random seed, find more details in their config files)




  prompt:
    - "b&w photo of 42 y.o man in black clothes, bald, face, half body, body, high detailed skin, skin pores, coastline, overcast weather, wind, waves, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
    - "close up photo of a rabbit, forest, haze, halation, bloom, dramatic atmosphere, centred, rule of thirds, 200mm 1.4f macro shot"
    - "photo of coastline, rocks, storm weather, wind, waves, lightning, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
    - "night, b&w photo of old house, post apocalypse, forest, storm weather, wind, rocks, 8k uhd, dslr, soft lighting, high quality, film grain"

  n_prompt:
    - "semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck"
    - "semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck"
    - "blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
    - "blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, art, mutated hands and fingers, deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"






	Start training motion module with the following command:




## 4 GPUS
bash tools/dist_train.sh configs/animatediff/animatediff.py 4
## 1 GPU
python tools/train.py configs/animatediff/animatediff.py
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Summary


	Number of checkpoints: 9


	Number of configs: 12


	Number of papers: 6


	ALGORITHM: 6











Stable Diffusion (2022)


Stable Diffusion [https://github.com/CompVis/stable-diffusion]





Task: Text2Image, Inpainting






Abstract


Stable Diffusion is a latent diffusion model conditioned on the text embeddings of a CLIP text encoder, which allows you to create images from text inputs. This model builds upon the CVPR’22 work High-Resolution Image Synthesis with Latent Diffusion Models [https://ommer-lab.com/research/latent-diffusion-models/]. The official code was released at stable-diffusion [https://github.com/CompVis/stable-diffusion] and also implemented at diffusers [https://github.com/huggingface/diffusers]. We support this algorithm here to facilitate the community to learn together and compare it with other text2image methods.




  
    	

  
  

  A mecha robot in a favela in expressionist style


    	

  
  

  A Chinese palace is beside a beautiful lake


    	

  
  

  A panda is having dinner at KFC


  







Pretrained models




	Model
	Task
	Dataset
	Download





	stable_diffusion_v1.5
	Text2Image
	-
	-



	stable_diffusion_v1.5_tomesd
	Text2Image
	-
	-



	stable_diffusion_v1.5_inpaint
	Inpainting
	-
	-





We use stable diffusion v1.5 weights. This model has several weights including vae, unet and clip.

You may download the weights from stable-diffusion-1.5 [https://huggingface.co/runwayml/stable-diffusion-v1-5] and change the ‘from_pretrained’ in config to the weights dir.

Download with git:

git lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5








Quick Start

Running the following codes, you can get a text-generated image.

from mmengine import MODELS, Config
from torchvision import utils

from mmengine.registry import init_default_scope

init_default_scope('mmagic')

config = 'configs/stable_diffusion/stable-diffusion_ddim_denoisingunet.py'
config = Config.fromfile(config).copy()
## change the 'pretrained_model_path' if you have downloaded the weights manually
## config.model.unet.from_pretrained = '/path/to/your/stable-diffusion-v1-5'
## config.model.vae.from_pretrained = '/path/to/your/stable-diffusion-v1-5'

StableDiffuser = MODELS.build(config.model)
prompt = 'A mecha robot in a favela in expressionist style'
StableDiffuser = StableDiffuser.to('cuda')

image = StableDiffuser.infer(prompt)['samples'][0]
image.save('robot.png')





To inpaint an image, you could run the following codes.

import mmcv
from mmengine import MODELS, Config
from mmengine.registry import init_default_scope
from PIL import Image

init_default_scope('mmagic')

config = 'configs/stable_diffusion/stable-diffusion_ddim_denoisingunet-inpaint.py'
config = Config.fromfile(config).copy()
## change the 'pretrained_model_path' if you have downloaded the weights manually
## config.model.unet.from_pretrained = '/path/to/your/stable-diffusion-inpainting'
## config.model.vae.from_pretrained = '/path/to/your/stable-diffusion-inpainting'

StableDiffuser = MODELS.build(config.model)
prompt = 'a mecha robot sitting on a bench'

img_url = 'https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png'  ## noqa
mask_url = 'https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png'  ## noqa

image = Image.fromarray(mmcv.imread(img_url, channel_order='rgb'))
mask = Image.fromarray(mmcv.imread(mask_url)).convert('L')
StableDiffuser = StableDiffuser.to('cuda')

image = StableDiffuser.infer(
    prompt,
    image,
    mask
)['samples'][0]
image.save('inpaint.png')








Use ToMe to accelerate your stable diffusion model

We support tomesd [https://github.com/dbolya/tomesd] now! It is developed based on ToMe [https://github.com/facebookresearch/ToMe], an efficient ViT speed-up tool based on token merging. To work on with tomesd in mmagic, you just need to add tomesd_cfg to model as shown in stable_diffusion_v1.5_tomesd. The only requirement is torch >= 1.12.1 in order to properly support torch.Tensor.scatter_reduce() functionality. Please do check it before running the demo.

...
model = dict(
    type='StableDiffusion',
    unet=unet,
    vae=vae,
    enable_xformers=False,
    text_encoder=dict(
        type='ClipWrapper',
        clip_type='huggingface',
        pretrained_model_name_or_path=stable_diffusion_v15_url,
        subfolder='text_encoder'),
    tokenizer=stable_diffusion_v15_url,
    scheduler=diffusion_scheduler,
    test_scheduler=diffusion_scheduler,
    tomesd_cfg=dict(
        ratio=0.5))





The detailed settings for tomesd_cfg are as follows:


	ratio (float): The ratio of tokens to merge. For example, 0.4 would reduce the total number of tokens by 40%.The maximum value for this is 1-(1/(sx * sy)). By default, the max ratio is 0.75, usually <= 0.5 is recommended. Higher values result in more speed-up, but with more visual quality loss.


	max_downsample (int): Apply ToMe to layers with at most this amount of downsampling. E.g., 1 only applies to layers with no downsampling, while 8 applies to all layers. Should be chosen from 1, 2, 4, 8. 1, 2 are recommended.


	sx, sy (int, int): The stride for computing dst sets. A higher stride means you can merge more tokens, default setting of (2, 2) works well in most cases. sx and sy do not need to divide image size.


	use_rand (bool): Whether or not to allow random perturbations when computing dst sets. By default: True, but if you’re having weird artifacts you can try turning this off.


	merge_attn (bool): Whether or not to merge tokens for attention (recommended).


	merge_crossattn (bool): Whether or not to merge tokens for cross attention (not recommended).


	merge_mlp (bool): Whether or not to merge tokens for the mlp layers (especially not recommended).




For more details about the tomesd setting, please refer to Token Merging for Stable Diffusion [https://arxiv.org/abs/2303.17604].

Then following the code below, you can evaluate the speed-up performance on stable diffusion models or stable-diffusion-based models (DreamBooth, ControlNet).

import time
import numpy as np

from mmengine import MODELS, Config
from mmengine.registry import init_default_scope

init_default_scope('mmagic')

_device = 0
work_dir = '/path/to/your/work_dir'
config = 'configs/stable_diffusion/stable-diffusion_ddim_denoisingunet-tomesd_5e-1.py'
config = Config.fromfile(config).copy()
## ## change the 'pretrained_model_path' if you have downloaded the weights manually
## config.model.unet.from_pretrained = '/path/to/your/stable-diffusion-v1-5'
## config.model.vae.from_pretrained = '/path/to/your/stable-diffusion-v1-5'

## w/o tomesd
config.model.tomesd_cfg = None
StableDiffuser = MODELS.build(config.model).to(f'cuda:{_device}')
prompt = 'A mecha robot in a favela in expressionist style'

## inference time evaluation params
size = 512
ratios = [0.5, 0.75]
samples_perprompt = 5

t = time.time()
for i in range(100//samples_perprompt):
    image = StableDiffuser.infer(prompt, height=size, width=size, num_images_per_prompt=samples_perprompt)['samples'][0]
    if i == 0:
        image.save(f"{work_dir}/wo_tomesd.png")
print(f"Generating 100 images with {samples_perprompt} images per prompt, without ToMe speed-up, time used : {time.time() - t}s")

for ratio in ratios:
    ## w/ tomesd
    config.model.tomesd_cfg = dict(ratio=ratio)
    sd_model = MODELS.build(config.model).to(f'cuda:{_device}')

    t = time.time()
    for i in range(100//samples_perprompt):
        image = sd_model.infer(prompt, height=size, width=size, num_images_per_prompt=samples_perprompt)['samples'][0]
        if i == 0:
            image.save(f"{work_dir}/w_tomesd_ratio_{ratio}.png")

    print(f"Generating 100 images with {samples_perprompt} images per prompt, merging ratio {ratio}, time used : {time.time() - t}s")





Here are some inference performance comparisons running on single RTX 3090 with torch 2.0.0+cu118 as backends. The results are reasonable, when enabling xformers, the speed-up ratio is a little bit lower. But tomesd still effectively reduces the inference time. It is especially recommended that enable tomesd when the image_size and num_images_per_prompt are large, since the number of similar tokens are larger and tomesd can achieve better performance.




	Model
	Task
	Dataset
	Download
	xformer
	Ratio
	Size / Num images per prompt
	Time (s)





	stable_diffusion_v1.5-tomesd
	Text2Image
	-
	-
	w/o
	w/o tome  0.5  0.75
  
    
    
    video super-resolution
    

    

    

    

    

    
 
  

    
      
          
            
  
video super-resolution


Summary


	Number of checkpoints: 27


	Number of configs: 29


	Number of papers: 6


	ALGORITHM: 7











BasicVSR++ (CVPR’2022)


BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment [https://arxiv.org/abs/2104.13371]





Task: Video Super-Resolution






Abstract


A recurrent structure is a popular framework choice for the task of video super-resolution. The state-of-the-art method BasicVSR adopts bidirectional propagation with feature alignment to effectively exploit information from the entire input video. In this study, we redesign BasicVSR by proposing second-order grid propagation and flow-guided deformable alignment. We show that by empowering the recurrent framework with the enhanced propagation and alignment, one can exploit spatiotemporal information across misaligned video frames more effectively. The new components lead to an improved performance under a similar computational constraint. In particular, our model BasicVSR++ surpasses BasicVSR by 0.82 dB in PSNR with similar number of parameters. In addition to video super-resolution, BasicVSR++ generalizes well to other video restoration tasks such as compressed video enhancement. In NTIRE 2021, BasicVSR++ obtains three champions and one runner-up in the Video Super-Resolution and Compressed Video Enhancement Challenges. Codes and models will be released to MMagic.
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Summary


	Number of checkpoints: 18


	Number of configs: 18


	Number of papers: 3


	ALGORITHM: 3











SAGAN (ICML’2019)


Self-attention generative adversarial networks [https://proceedings.mlr.press/v97/zhang19d.html]





Task: Conditional GANs






Abstract


In this paper, we propose the Self-Attention Generative Adversarial Network (SAGAN) which allows attention-driven, long-range dependency modeling for image generation tasks. Traditional convolutional GANs generate high-resolution details as a function of only spatially local points in lower-resolution feature maps. In SAGAN, details can be generated using cues from all feature locations. Moreover, the discriminator can check that highly detailed features in distant portions of the image are consistent with each other. Furthermore, recent work has shown that generator conditioning affects GAN performance. Leveraging this insight, we apply spectral normalization to the GAN generator and find that this improves training dynamics. The proposed SAGAN performs better than prior work, boosting the best published Inception score from 36.8 to 52.52 and reducing Fréchet Inception distance from 27.62 to 18.65 on the challenging ImageNet dataset. Visualization of the attention layers shows that the generator leverages neighborhoods that correspond to object shapes rather than local regions of fixed shape.
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Summary


	Number of checkpoints: 7


	Number of configs: 7


	Number of papers: 3


	ALGORITHM: 3











FLAVR (arXiv’2020)


FLAVR: Flow-Agnostic Video Representations for Fast Frame Interpolation [https://arxiv.org/pdf/2012.08512.pdf]





Task: Video Interpolation






Abstract


Most modern frame interpolation approaches rely on explicit bidirectional optical flows between adjacent frames, thus are sensitive to the accuracy of underlying flow estimation in handling occlusions while additionally introducing computational bottlenecks unsuitable for efficient deployment. In this work, we propose a flow-free approach that is completely end-to-end trainable for multi-frame video interpolation. Our method, FLAVR, is designed to reason about non-linear motion trajectories and complex occlusions implicitly from unlabeled videos and greatly simplifies the process of training, testing and deploying frame interpolation models. Furthermore, FLAVR delivers up to 6× speed up compared to the current state-of-the-art methods for multi-frame interpolation while consistently demonstrating superior qualitative and quantitative results compared with prior methods on popular benchmarks including Vimeo-90K, Adobe-240FPS, and GoPro. Finally, we show that frame interpolation is a competitive self-supervised pre-training task for videos via demonstrating various novel applications of FLAVR including action recognition, optical flow estimation, motion magnification, and video object tracking. Code and trained models are provided in the supplementary material.



  
    
    
    text2image
    

    

    

    

    

    
 
  

    
      
          
            
  
text2image


Summary


	Number of checkpoints: 6


	Number of configs: 18


	Number of papers: 8


	ALGORITHM: 8











FastComposer (2023)


FastComposer: Tuning-Free Multi-Subject Image Generation with Localized Attention [https://arxiv.org/abs/2305.10431]





Task: Text2Image






Abstract


