条件生成对抗网络¶
概览¶
预训练权重个数: 7
配置文件个数: 0
论文个数: 1
ALGORITHM: 1
BigGAN (ICLR’2019)¶
任务: 条件生成对抗网络
Abstract¶
Despite recent progress in generative image modeling, successfully generating high-resolution, diverse samples from complex datasets such as ImageNet remains an elusive goal. To this end, we train Generative Adversarial Networks at the largest scale yet attempted, and study the instabilities specific to such scale. We find that applying orthogonal regularization to the generator renders it amenable to a simple “truncation trick,” allowing fine control over the trade-off between sample fidelity and variety by reducing the variance of the Generator’s input. Our modifications lead to models which set the new state of the art in class-conditional image synthesis. When trained on ImageNet at 128x128 resolution, our models (BigGANs) achieve an Inception Score (IS) of 166.5 and Frechet Inception Distance (FID) of 7.4, improving over the previous best IS of 52.52 and FID of 18.6.

Introduction¶
BigGAN/BigGAN-Deep
是一个条件生成模型,通过扩大批次大小和模型参数的数量,可以生成高分辨率和高质量的图像。
我们已经在Cifar10
(32x32)中完成了BigGAN
的训练,并在ImageNet1k
(128x128)上对齐了训练性能。下面是一些抽样的结果,供你参考。


对我们训练的 BigGAN 进行评估.
算法 | 数据集 | FID (Iter) | IS (Iter) | 下载 |
---|---|---|---|---|
BigGAN 32x32 | CIFAR10 | 9.78(390000) | 8.70(390000) | model|log |
BigGAN 128x128 Best FID | ImageNet1k | 8.69(1232000) | 101.15(1232000) | model|log |
BigGAN 128x128 Best IS | ImageNet1k | 13.51(1328000) | 129.07(1328000) | model|log |
关于可复现性的说明¶
BigGAN 128x128
模型是用 V100 GPU 和 CUDA 10.1 训练的,用 A100 和 CUDA 11.3 很难再现结果。如果你对复现有任何想法,请随时与我们联系。
转换后的权重¶
由于我们还没有完成对模型的训练,我们为您提供了几个已经评估过的预训练权重。这里,我们指的是BigGAN-PyTorch和pytorch-pretrained-BigGAN。
下面提供了评估结果和下载链接
模型 | 数据集 | FID | IS | 下载 | 原始权重下载链接 |
---|---|---|---|---|---|
BigGAN 128x128 | ImageNet1k | 10.1414 | 96.728 | model | link |
BigGAN-Deep 128x128 | ImageNet1k | 5.9471 | 107.161 | model | link |
BigGAN-Deep 256x256 | ImageNet1k | 11.3151 | 135.107 | model | link |
BigGAN-Deep 512x512 | ImageNet1k | 16.8728 | 124.368 | model | link |
采样结果如下。



python demo/conditional_demo.py CONFIG_PATH CKPT_PATH --sample-cfg truncation=0.4 ## set truncation value as you want
对于转换后的权重,我们在configs/_base_/models
下提供模型配置,列举如下。
## biggan_cvt-BigGAN-PyTorch-rgb_imagenet1k-128x128.py
## biggan-deep_cvt-hugging-face-rgb_imagenet1k-128x128.py
## biggan-deep_cvt-hugging-face_rgb_imagenet1k-256x256.py
## biggan-deep_cvt-hugging-face_rgb_imagenet1k-512x512.py
Interpolation¶
要在 BigGAN(或其他条件模型)上执行图像插值,请运行
python apps/conditional_interpolate.py CONFIG_PATH CKPT_PATH --samples-path SAMPLES_PATH

要在 BigGAN 上进行具有固定噪声的图像插值,请运行
python apps/conditional_interpolate.py CONFIG_PATH CKPT_PATH --samples-path SAMPLES_PATH --fix-z

python apps/conditional_interpolate.py CONFIG_PATH CKPT_PATH --samples-path SAMPLES_PATH --fix-y

Citation¶
@inproceedings{
brock2018large,
title={Large Scale {GAN} Training for High Fidelity Natural Image Synthesis},
author={Andrew Brock and Jeff Donahue and Karen Simonyan},
booktitle={International Conference on Learning Representations},
year={2019},
url={https://openreview.net/forum?id=B1xsqj09Fm},
}