Shortcuts

mmagic.models.editors.deepfillv1.deepfillv1 源代码

# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional

import torch

from mmagic.models.base_models import TwoStageInpaintor
from mmagic.models.utils import extract_around_bbox, extract_bbox_patch
from mmagic.registry import MODELS
from ...utils import set_requires_grad


@MODELS.register_module()
[文档]class DeepFillv1Inpaintor(TwoStageInpaintor): """Inpaintor for deepfillv1 method. This inpaintor is implemented according to the paper: Generative image inpainting with contextual attention Importantly, this inpaintor is an example for using custom training schedule based on `TwoStageInpaintor`. The training pipeline of deepfillv1 is as following: .. code-block:: python if cur_iter < iter_tc: update generator with only l1 loss else: update discriminator if cur_iter > iter_td: update generator with l1 loss and adversarial loss The new attribute `cur_iter` is added for recording current number of iteration. The `train_cfg` contains the setting of the training schedule: .. code-block:: python train_cfg = dict( start_iter=0, disc_step=1, iter_tc=90000, iter_td=100000 ) `iter_tc` and `iter_td` correspond to the notation :math:`T_C` and :math:`T_D` of the original paper. Args: generator (dict): Config for encoder-decoder style generator. disc (dict): Config for discriminator. loss_gan (dict): Config for adversarial loss. loss_gp (dict): Config for gradient penalty loss. loss_disc_shift (dict): Config for discriminator shift loss. loss_composed_percep (dict): Config for perceptual and style loss with composed image as input. loss_out_percep (dict): Config for perceptual and style loss with direct output as input. loss_l1_hole (dict): Config for l1 loss in the hole. loss_l1_valid (dict): Config for l1 loss in the valid region. loss_tv (dict): Config for total variation loss. train_cfg (dict): Configs for training scheduler. `disc_step` must be contained for indicates the discriminator updating steps in each training step. test_cfg (dict): Configs for testing scheduler. init_cfg (dict, optional): Initialization config dict. """ def __init__(self, data_preprocessor: dict, encdec: dict, disc=None, loss_gan=None, loss_gp=None, loss_disc_shift=None, loss_composed_percep=None, loss_out_percep=False, loss_l1_hole=None, loss_l1_valid=None, loss_tv=None, stage1_loss_type=None, stage2_loss_type=None, train_cfg=None, test_cfg=None, init_cfg: Optional[dict] = None): super().__init__( data_preprocessor=data_preprocessor, encdec=encdec, disc=disc, loss_gan=loss_gan, loss_gp=loss_gp, loss_disc_shift=loss_disc_shift, loss_composed_percep=loss_composed_percep, loss_out_percep=loss_out_percep, loss_l1_hole=loss_l1_hole, loss_l1_valid=loss_l1_valid, loss_tv=loss_tv, stage1_loss_type=stage1_loss_type, stage2_loss_type=stage2_loss_type, train_cfg=train_cfg, test_cfg=test_cfg, init_cfg=init_cfg) if self.train_cfg is not None: self.cur_iter = self.train_cfg.start_iter
[文档] def forward_train_d(self, data_batch, is_real, is_disc): """Forward function in discriminator training step. In this function, we modify the default implementation with only one discriminator. In DeepFillv1 model, they use two separated discriminators for global and local consistency. Args: data_batch (torch.Tensor): Batch of real data or fake data. is_real (bool): If True, the gan loss will regard this batch as real data. Otherwise, the gan loss will regard this batch as fake data. is_disc (bool): If True, this function is called in discriminator training step. Otherwise, this function is called in generator training step. This will help us to compute different types of adversarial loss, like LSGAN. Returns: dict: Contains the loss items computed in this function. """ global_pred, local_pred = self.disc(data_batch) loss_global = self.loss_gan(global_pred, is_real, is_disc) loss_local = self.loss_gan(local_pred, is_real, is_disc) if is_real: loss = dict( real_loss_global=loss_global, real_loss_local=loss_local) else: loss = dict( fake_loss_global=loss_global, fake_loss_local=loss_local) if self.with_disc_shift_loss: loss_d_shift_global = self.loss_disc_shift(loss_global) loss_d_shift_local = self.loss_disc_shift(loss_local) # 0.5 for average the fake and real data loss.update(loss_disc_shift_global=loss_d_shift_global * 0.5) loss.update(loss_disc_shift_local=loss_d_shift_local * 0.5) return loss
[文档] def two_stage_loss(self, stage1_data, stage2_data, gt, mask, masked_img): """Calculate two-stage loss. Args: stage1_data (dict): Contain stage1 results. stage2_data (dict): Contain stage2 results. gt (torch.Tensor): Ground-truth image. mask (torch.Tensor): Mask image. masked_img (torch.Tensor): Composition of mask image and ground-truth image. Returns: tuple(dict): Dict contains the results computed within this \ function for visualization and dict contains the loss items \ computed in this function. """ loss = dict() results = dict( gt_img=gt.cpu(), mask=mask.cpu(), masked_img=masked_img.cpu()) # calculate losses for stage1 if self.stage1_loss_type is not None: fake_res = stage1_data['fake_res'] fake_img = stage1_data['fake_img'] for type_key in self.stage1_loss_type: tmp_loss = self.calculate_loss_with_type( type_key, fake_res, fake_img, gt, mask, prefix='stage1_') loss.update(tmp_loss) results.update( dict( stage1_fake_res=stage1_data['fake_res'].cpu(), stage1_fake_img=stage1_data['fake_img'].cpu())) if self.stage2_loss_type is not None: fake_res = stage2_data['fake_res'] fake_img = stage2_data['fake_img'] fake_local = stage2_data['fake_local'] for type_key in self.stage2_loss_type: tmp_loss = self.calculate_loss_with_type( type_key, fake_res, fake_img, gt, mask, prefix='stage2_', fake_local=fake_local) loss.update(tmp_loss) results.update( dict( stage2_fake_res=stage2_data['fake_res'].cpu(), stage2_fake_img=stage2_data['fake_img'].cpu())) return results, loss
[文档] def calculate_loss_with_type(self, loss_type, fake_res, fake_img, gt, mask, prefix='stage1_', fake_local=None): """Calculate multiple types of losses. Args: loss_type (str): Type of the loss. fake_res (torch.Tensor): Direct results from model. fake_img (torch.Tensor): Composited results from model. gt (torch.Tensor): Ground-truth tensor. mask (torch.Tensor): Mask tensor. prefix (str, optional): Prefix for loss name. Defaults to 'stage1\_'. # noqa fake_local (torch.Tensor, optional): Local results from model. Defaults to None. Returns: dict: Contain loss value with its name. """ loss_dict = dict() if loss_type == 'loss_gan': g_fake_global_pred, g_fake_local_pred = self.disc( (fake_img, fake_local)) loss_g_fake_global = self.loss_gan( g_fake_global_pred, True, is_disc=False) loss_g_fake_local = self.loss_gan( g_fake_local_pred, True, is_disc=False) loss_dict[prefix + 'loss_g_fake'] = loss_g_fake_global + loss_g_fake_local elif 'percep' in loss_type: loss_pecep, loss_style = self.loss_percep(fake_img, gt) if loss_pecep is not None: loss_dict[prefix + loss_type] = loss_pecep if loss_style is not None: loss_dict[prefix + loss_type[:-6] + 'style'] = loss_style elif 'tv' in loss_type: loss_tv = self.loss_tv(fake_img, mask=mask) loss_dict[prefix + loss_type] = loss_tv elif 'l1' in loss_type: weight = 1. - mask if 'valid' in loss_type else mask loss_l1 = getattr(self, loss_type)(fake_res, gt, weight=weight) loss_dict[prefix + loss_type] = loss_l1 else: raise NotImplementedError( f'Please check your loss type {loss_type}' ' and the config dict in init function. ' 'We cannot find the related loss function.') return loss_dict
[文档] def train_step(self, data: List[dict], optim_wrapper): """Train step function. In this function, the inpaintor will finish the train step following the pipeline: 1. get fake res/image 2. optimize discriminator (if have) 3. optimize generator If `self.train_cfg.disc_step > 1`, the train step will contain multiple iterations for optimizing discriminator with different input data and only one iteration for optimizing generator after `disc_step` iterations for discriminator. Args: data (List[dict]): Batch of data as input. optim_wrapper (dict[torch.optim.Optimizer]): Dict with optimizers for generator and discriminator (if have). Returns: dict: Dict with loss, information for logger, the number of \ samples and results for visualization. """ data = self.data_preprocessor(data, True) batch_inputs, data_samples = data['inputs'], data['data_samples'] log_vars = {} masked_img = batch_inputs # float gt_img = data_samples.gt_img mask = data_samples.mask mask = mask.float() # PyTorch 2.0 could not compile 'data_samples.mask_bbox' # bbox_tensor = torch.LongTensor(data_samples.mask_bbox) bbox_tensor = torch.LongTensor(data_samples.metainfo['mask_bbox']) # get common output from encdec # input with ones tmp_ones = torch.ones_like(mask) input_x = torch.cat([masked_img, tmp_ones, mask], dim=1) stage1_fake_res, stage2_fake_res = self.generator(input_x) stage1_fake_img = masked_img * (1. - mask) + stage1_fake_res * mask stage2_fake_img = masked_img * (1. - mask) + stage2_fake_res * mask stage2_fake_local, bbox_new = extract_around_bbox( stage2_fake_img, bbox_tensor, self.train_cfg.local_size) gt_local = extract_bbox_patch(bbox_new, gt_img) fake_gt_local = torch.cat([stage2_fake_local, gt_local], dim=2) # discriminator training step # In this version, we only use the results from the second stage to # train discriminators, which is a commonly used setting. This can be # easily modified to your custom training schedule. if self.train_cfg.disc_step > 0 and self.with_gan: set_requires_grad(self.disc, True) fake_data = (stage2_fake_img.detach(), stage2_fake_local.detach()) real_data = (gt_img, gt_local) disc_losses = self.forward_train_d(fake_data, False, is_disc=True) loss_disc, log_vars_d = self.parse_losses(disc_losses) log_vars.update(log_vars_d) optim_wrapper['disc'].zero_grad() optim_wrapper['disc'].backward(loss_disc) disc_losses = self.forward_train_d(real_data, True, is_disc=True) loss_disc, log_vars_d = self.parse_losses(disc_losses) log_vars.update(log_vars_d) optim_wrapper['disc'].backward(loss_disc) if self.with_gp_loss: if hasattr(self.disc, 'module'): global_disc = self.disc.module.global_disc local_disc = self.disc.module.local_disc else: global_disc = self.disc.global_disc local_disc = self.disc.local_disc loss_gp_global = self.loss_gp( global_disc, gt_img, stage2_fake_img, mask=mask) loss_gp_local = self.loss_gp(local_disc, gt_local, stage2_fake_local) loss_disc, log_vars_d = self.parse_losses( dict( loss_gp_global=loss_gp_global, loss_gp_local=loss_gp_local)) log_vars.update(log_vars_d) optim_wrapper['disc'].backward(loss_disc) optim_wrapper['disc'].step() self.disc_step_count = (self.disc_step_count + 1) % self.train_cfg.disc_step if self.disc_step_count != 0: # results contain the data for visualization results = dict( gt_img=gt_img.cpu(), masked_img=masked_img.cpu(), stage1_fake_res=stage1_fake_res.cpu(), stage1_fake_img=stage1_fake_img.cpu(), stage2_fake_res=stage2_fake_res.cpu(), stage2_fake_img=stage2_fake_img.cpu(), fake_gt_local=fake_gt_local.cpu(), fake_res=stage2_fake_res.cpu(), fake_img=stage2_fake_img.cpu()) return log_vars # prepare stage1 results and stage2 results dict for calculating losses stage1_results = dict( fake_res=stage1_fake_res, fake_img=stage1_fake_img) stage2_results = dict( fake_res=stage2_fake_res, fake_img=stage2_fake_img, fake_local=stage2_fake_local) # generator (encdec) and refiner training step, results contain the # data for visualization if self.with_gan: set_requires_grad(self.disc, False) results, two_stage_losses = self.two_stage_loss( stage1_results, stage2_results, gt_img, mask, masked_img) loss_two_stage, log_vars_two_stage = self.parse_losses( two_stage_losses) log_vars.update(log_vars_two_stage) optim_wrapper['generator'].zero_grad() optim_wrapper['generator'].backward(loss_two_stage) optim_wrapper['generator'].step() results['fake_gt_local'] = fake_gt_local.cpu() return log_vars
Read the Docs v: latest
Versions
latest
stable
0.x
Downloads
pdf
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.