Shortcuts

mmagic.models.editors.indexnet.indexnet 源代码

# Copyright (c) OpenMMLab. All rights reserved.
from mmagic.models.base_models import BaseMattor
from mmagic.models.utils import get_unknown_tensor
from mmagic.registry import MODELS


@MODELS.register_module()
[文档]class IndexNet(BaseMattor): """IndexNet matting model. This implementation follows: Indices Matter: Learning to Index for Deep Image Matting Args: data_preprocessor (dict, optional): The pre-process config of :class:`BaseDataPreprocessor`. backbone (dict): Config of backbone. train_cfg (dict): Config of training. In 'train_cfg', 'train_backbone' should be specified. test_cfg (dict): Config of testing. init_cfg (dict, optional): The weight initialized config for :class:`BaseModule`. loss_alpha (dict): Config of the alpha prediction loss. Default: None. loss_comp (dict): Config of the composition loss. Default: None. """ def __init__(self, data_preprocessor, backbone, loss_alpha=None, loss_comp=None, init_cfg=None, train_cfg=None, test_cfg=None): super().__init__( backbone=backbone, data_preprocessor=data_preprocessor, init_cfg=init_cfg, train_cfg=train_cfg, test_cfg=test_cfg) self.loss_alpha = ( MODELS.build(loss_alpha) if loss_alpha is not None else None) self.loss_comp = ( MODELS.build(loss_comp) if loss_comp is not None else None)
[文档] def _forward(self, inputs): """Forward function. Args: inputs (torch.Tensor): Input tensor. Returns: Tensor: Output tensor. """ pred_alpha = self.backbone(inputs) return pred_alpha
[文档] def _forward_test(self, inputs): """Forward function for testing IndexNet model. Args: inputs (torch.Tensor): batch input tensor. Returns: Tensor: Output tensor of model. """ return self._forward(inputs)
[文档] def _forward_train(self, inputs, data_samples): """Forward function for training IndexNet model. Args: inputs (torch.Tensor): batch input tensor collated by :attr:`data_preprocessor`. data_samples (List[BaseDataElement]): data samples collated by :attr:`data_preprocessor`. Returns: dict: Contains the loss items and batch information. """ trimap = inputs[:, 3:, :, :] gt_alpha = data_samples.gt_alpha gt_fg = data_samples.gt_fg gt_bg = data_samples.gt_bg gt_merged = data_samples.gt_merged pred_alpha = self.backbone(inputs) weight = get_unknown_tensor(trimap, unknown_value=128 / 255) losses = dict() if self.loss_alpha is not None: losses['loss_alpha'] = self.loss_alpha(pred_alpha, gt_alpha, weight) if self.loss_comp is not None: losses['loss_comp'] = self.loss_comp(pred_alpha, gt_fg, gt_bg, gt_merged, weight) return losses
Read the Docs v: latest
Versions
latest
stable
0.x
Downloads
pdf
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.