Shortcuts

mmagic.models.editors.wgan_gp.wgan_discriminator 源代码

# Copyright (c) OpenMMLab. All rights reserved.
from copy import deepcopy

import numpy as np
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule

from mmagic.registry import MODELS
from .wgan_gp_module import ConvLNModule, WGANDecisionHead


@MODELS.register_module()
[文档]class WGANGPDiscriminator(BaseModule): r"""Discriminator for WGANGP. Implementation Details for WGANGP discriminator the same as training configuration (a) described in PGGAN paper: PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf # noqa #. Adopt convolution architecture specified in appendix A.2; #. Add layer normalization to all conv3x3 and conv4x4 layers; #. Use LeakyReLU in the discriminator except for the final output layer; #. Initialize all weights using He’s initializer. Args: in_channel (int): The channel number of the input image. in_scale (int): The scale of the input image. conv_module_cfg (dict, optional): Config for the convolution module used in this discriminator. Defaults to None. init_cfg (dict, optional): Initialization config dict. """
[文档] _default_channels_per_scale = { '4': 512, '8': 512, '16': 256, '32': 128, '64': 64, '128': 32
}
[文档] _default_conv_module_cfg = dict( conv_cfg=None, kernel_size=3, stride=1, padding=1, bias=True, act_cfg=dict(type='LeakyReLU', negative_slope=0.2), norm_cfg=dict(type='LN2d'), order=('conv', 'norm', 'act'))
[文档] _default_upsample_cfg = dict(type='nearest', scale_factor=2)
def __init__(self, in_channel, in_scale, conv_module_cfg=None, init_cfg=None): super().__init__(init_cfg=init_cfg) # set initial params self.in_channel = in_channel self.in_scale = in_scale self.conv_module_cfg = deepcopy(self._default_conv_module_cfg) if conv_module_cfg is not None: self.conv_module_cfg.update(conv_module_cfg) # set from_rgb head self.from_rgb = ConvModule( 3, kernel_size=1, out_channels=self._default_channels_per_scale[str(self.in_scale)], act_cfg=dict(type='LeakyReLU', negative_slope=0.2)) # set conv_blocks self.conv_blocks = nn.ModuleList() log2scale = int(np.log2(self.in_scale)) for i in range(log2scale, 2, -1): self.conv_blocks.append( ConvLNModule( self._default_channels_per_scale[str(2**i)], self._default_channels_per_scale[str(2**i)], feature_shape=(self._default_channels_per_scale[str(2**i)], 2**i, 2**i), **self.conv_module_cfg)) self.conv_blocks.append( ConvLNModule( self._default_channels_per_scale[str(2**i)], self._default_channels_per_scale[str(2**(i - 1))], feature_shape=(self._default_channels_per_scale[str( 2**(i - 1))], 2**i, 2**i), **self.conv_module_cfg)) self.conv_blocks.append(nn.AvgPool2d(kernel_size=2, stride=2)) self.decision = WGANDecisionHead( self._default_channels_per_scale['4'], self._default_channels_per_scale['4'], 1, act_cfg=dict(type='LeakyReLU', negative_slope=0.2), norm_cfg=self.conv_module_cfg['norm_cfg'])
[文档] def forward(self, x): """Forward function. Args: x (torch.Tensor): Fake or real image tensor. Returns: torch.Tensor: Prediction for the reality of the input image. """ # noise vector to 2D feature x = self.from_rgb(x) for conv in self.conv_blocks: x = conv(x) x = self.decision(x) return x
Read the Docs v: latest
Versions
latest
stable
0.x
Downloads
pdf
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.