Shortcuts

mmagic.models.editors.wgan_gp.wgan_generator 源代码

# Copyright (c) OpenMMLab. All rights reserved.
from copy import deepcopy

import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule

from mmagic.models.utils import get_module_device
from mmagic.registry import MODELS
from .wgan_gp_module import WGANNoiseTo2DFeat


@MODELS.register_module()
[文档]class WGANGPGenerator(BaseModule): r"""Generator for WGANGP. Implementation Details for WGANGP generator the same as training configuration (a) described in PGGAN paper: PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf # noqa #. Adopt convolution architecture specified in appendix A.2; #. Use batchnorm in the generator except for the final output layer; #. Use ReLU in the generator except for the final output layer; #. Use Tanh in the last layer; #. Initialize all weights using He’s initializer. Args: noise_size (int): Size of the input noise vector. out_scale (int): Output scale for the generated image. conv_module_cfg (dict, optional): Config for the convolution module used in this generator. Defaults to None. upsample_cfg (dict, optional): Config for the upsampling operation. Defaults to None. init_cfg (dict, optional): Initialization config dict. """
[文档] _default_channels_per_scale = { '4': 512, '8': 512, '16': 256, '32': 128, '64': 64, '128': 32
}
[文档] _default_conv_module_cfg = dict( conv_cfg=None, kernel_size=3, stride=1, padding=1, bias=True, act_cfg=dict(type='ReLU'), norm_cfg=dict(type='BN'), order=('conv', 'norm', 'act'))
[文档] _default_upsample_cfg = dict(type='nearest', scale_factor=2)
def __init__(self, noise_size, out_scale, conv_module_cfg=None, upsample_cfg=None, init_cfg=None): super().__init__(init_cfg=init_cfg) # set initial params self.noise_size = noise_size self.out_scale = out_scale self.conv_module_cfg = deepcopy(self._default_conv_module_cfg) if conv_module_cfg is not None: self.conv_module_cfg.update(conv_module_cfg) self.upsample_cfg = upsample_cfg if upsample_cfg else deepcopy( self._default_upsample_cfg) # set noise2feat head self.noise2feat = WGANNoiseTo2DFeat( self.noise_size, self._default_channels_per_scale['4']) # set conv_blocks self.conv_blocks = nn.ModuleList() self.conv_blocks.append(ConvModule(512, 512, **self.conv_module_cfg)) log2scale = int(np.log2(self.out_scale)) for i in range(3, log2scale + 1): self.conv_blocks.append(MODELS.build(self._default_upsample_cfg)) self.conv_blocks.append( ConvModule(self._default_channels_per_scale[str(2**(i - 1))], self._default_channels_per_scale[str(2**i)], **self.conv_module_cfg)) self.conv_blocks.append( ConvModule(self._default_channels_per_scale[str(2**i)], self._default_channels_per_scale[str(2**i)], **self.conv_module_cfg)) self.to_rgb = ConvModule( self._default_channels_per_scale[str(self.out_scale)], kernel_size=1, out_channels=3, act_cfg=dict(type='Tanh'))
[文档] def forward(self, noise, num_batches=0, return_noise=False): """Forward function. Args: noise (torch.Tensor | callable | None): You can directly give a batch of noise through a ``torch.Tensor`` or offer a callable function to sample a batch of noise data. Otherwise, the ``None`` indicates to use the default noise sampler. num_batches (int, optional): The number of batch size. Defaults to 0. return_noise (bool, optional): If True, ``noise_batch`` will be returned in a dict with ``fake_img``. Defaults to False. Returns: torch.Tensor | dict: If not ``return_noise``, only the output image will be returned. Otherwise, a dict contains ``fake_img`` and ``noise_batch`` will be returned. """ # receive noise and conduct sanity check. if isinstance(noise, torch.Tensor): assert noise.shape[1] == self.noise_size assert noise.ndim == 2, ('The noise should be in shape of (n, c), ' f'but got {noise.shape}') noise_batch = noise # receive a noise generator and sample noise. elif callable(noise): noise_generator = noise assert num_batches > 0 noise_batch = noise_generator((num_batches, self.noise_size)) # otherwise, we will adopt default noise sampler. else: assert num_batches > 0 noise_batch = torch.randn((num_batches, self.noise_size)) # dirty code for putting data on the right device noise_batch = noise_batch.to(get_module_device(self)) # noise vector to 2D feature x = self.noise2feat(noise_batch) for conv in self.conv_blocks: x = conv(x) out_img = self.to_rgb(x) if return_noise: output = dict(fake_img=out_img, noise_batch=noise_batch) return output return out_img
Read the Docs v: latest
Versions
latest
stable
0.x
Downloads
pdf
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.