Source code for mmagic.models.editors.fastcomposer.fastcomposer

# Copyright (c) OpenMMLab. All rights reserved.
from collections import OrderedDict
from typing import Any, Callable, Dict, List, Optional, Union

import numpy as np
import torch
from PIL import Image
from torch import nn
from torch.hub import load_state_dict_from_url
from tqdm import tqdm
from transformers import CLIPTokenizer

from mmagic.registry import MODELS
from ..stable_diffusion import StableDiffusion
from .fastcomposer_util import FastComposerModel, get_object_transforms

[docs]ModelType = Union[Dict, nn.Module]
[docs]class FastComposer(StableDiffusion): def __init__(self, pretrained_cfg: dict, vae: ModelType, text_encoder: ModelType, tokenizer: str, unet: ModelType, scheduler: ModelType, test_scheduler: Optional[ModelType] = None, dtype: str = 'fp32', enable_xformers: bool = True, noise_offset_weight: float = 0, tomesd_cfg: Optional[dict] = None, data_preprocessor=dict(type='DataPreprocessor'), init_cfg: Optional[dict] = None): super().__init__(vae, text_encoder, tokenizer, unet, scheduler, test_scheduler, dtype, enable_xformers, noise_offset_weight, tomesd_cfg, data_preprocessor, init_cfg) self.vae = self.vae.model self.unet = self.unet.model model = FastComposerModel.from_pretrained(pretrained_cfg, self.vae, self.unet) if pretrained_cfg['finetuned_model_path'][:7] == 'http://' or \ pretrained_cfg['finetuned_model_path'][:8] == 'https://': model.load_state_dict( load_state_dict_from_url( pretrained_cfg['finetuned_model_path'], map_location='cpu'), strict=False) elif pretrained_cfg['finetuned_model_path']: model.load_state_dict( torch.load( pretrained_cfg['finetuned_model_path'], map_location='cpu'), strict=False) weight_dtype = torch.float32 if dtype == 'fp16': weight_dtype = torch.float16 elif dtype == 'bf16': weight_dtype = torch.bfloat16 model = self.unet = model.unet if pretrained_cfg['enable_xformers_memory_efficient_attention']: self.unet.enable_xformers_memory_efficient_attention() self.text_encoder = model.text_encoder self.image_encoder = model.image_encoder self.postfuse_module = model.postfuse_module del model self.special_tokenizer = CLIPTokenizer.from_pretrained( pretrained_cfg['pretrained_model_name_or_path'], subfolder='tokenizer', revision=pretrained_cfg['revision'], ) self.special_tokenizer.add_tokens(['img'], special_tokens=True) self.image_token_id = self.special_tokenizer.convert_tokens_to_ids( 'img') self.object_transforms = get_object_transforms(pretrained_cfg) @torch.no_grad()
[docs] def _tokenize_and_mask_noun_phrases_ends(self, caption): """Augment the text embedding.""" input_ids = self.special_tokenizer.encode(caption) noun_phrase_end_mask = [False for _ in input_ids] clean_input_ids = [] clean_index = 0 for i, id in enumerate(input_ids): if id == self.image_token_id: noun_phrase_end_mask[clean_index - 1] = True else: clean_input_ids.append(id) clean_index += 1 max_len = self.special_tokenizer.model_max_length if len(clean_input_ids) > max_len: clean_input_ids = clean_input_ids[:max_len] else: clean_input_ids = clean_input_ids + [ self.tokenizer.pad_token_id ] * ( max_len - len(clean_input_ids)) if len(noun_phrase_end_mask) > max_len: noun_phrase_end_mask = noun_phrase_end_mask[:max_len] else: noun_phrase_end_mask = noun_phrase_end_mask + [False] * ( max_len - len(noun_phrase_end_mask)) clean_input_ids = torch.tensor(clean_input_ids, dtype=torch.long) noun_phrase_end_mask = torch.tensor( noun_phrase_end_mask, dtype=torch.bool) return clean_input_ids.unsqueeze(0), noun_phrase_end_mask.unsqueeze(0)
[docs] def _encode_augmented_prompt(self, prompt: str, reference_images: List[Image.Image], device: torch.device, weight_dtype: torch.dtype): """Encode reference images. Args: prompt (str or list(int)): prompt to be encoded. reference_images: (List[Image.Image]): List of reference images. device (torch.device):torch device. weight_dtype (torch.dtype): torch.dtype. Returns: text_embeddings (torch.Tensor): text embeddings generated by clip text encoder. """ # TODO: check this object_pixel_values = [] for image in reference_images: image_tensor = torch.from_numpy(np.array( image.convert('RGB'))).permute(2, 0, 1) image = self.object_transforms(image_tensor) object_pixel_values.append(image) object_pixel_values = torch.stack( object_pixel_values, dim=0).to(memory_format=torch.contiguous_format).float() object_pixel_values = object_pixel_values.unsqueeze(0).to( dtype=weight_dtype, device=device) object_embeds = self.image_encoder(object_pixel_values) id_and_mask = self._tokenize_and_mask_noun_phrases_ends(prompt) input_ids, image_token_mask = id_and_mask input_ids, image_token_mask = device), num_objects = image_token_mask.sum(dim=1) augmented_prompt_embeds = self.postfuse_module( self.text_encoder(input_ids)[0], object_embeds, image_token_mask, num_objects) return augmented_prompt_embeds
[docs] def infer(self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = 'pil', return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, alpha_: float = 0.7, reference_subject_images: List[Image.Image] = None, augmented_prompt_embeds: Optional[torch.FloatTensor] = None, show_progress: bool = True): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. height (`int`, *optional*): defaults to self.unet.config.sample_size * self.vae_scale_factor The height in pixels of the generated image. width (`int`, *optional*): defaults to self.unet.config.sample_size * self.vae_scale_factor The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance] ( `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper]( Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)]( docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL]( `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.cross_attention]( diffusers/blob/main/src/diffusers/models/ alpha_ (`float`, defaults to 0.7): The ratio of subject conditioning. If `alpha_` is 0.7, the beginning 30% of denoising steps use text prompts, while the last 70% utilize image-augmented prompts. Increase alpha for identity preservation, decrease it for prompt consistency. reference_subject_images (`List[PIL.Image.Image]`): a list of PIL images that are used as reference subjects. The number of images should be equal to the number of augmented tokens in the prompts. augmented_prompt_embeds: (`torch.FloatTensor`, *optional*): Pre-generated image augmented text embeddings. If not provided, embeddings will be generated from `prompt` and `reference_subject_images`. show_progress: ('bool'): show progress or not. Examples: Returns: `OrderedDict` or `tuple`: `OrderedDict` if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, ) assert_text = 'Prompt and reference subject images or prompt_embeds ' \ 'and augmented_prompt_embeds must be provided.' assert (prompt and reference_subject_images) or \ (prompt_embeds and augmented_prompt_embeds), assert_text # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self.device # here `guidance_scale` is defined analog to # the guidance weight `w` of equation (2) # of the Imagen paper: . # `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 assert do_classifier_free_guidance # 3. Encode input prompt prompt_text_only = prompt.replace('img', '') prompt_embeds = self._encode_prompt(prompt_text_only, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt) if augmented_prompt_embeds is None: augmented_prompt_embeds = self._encode_augmented_prompt( prompt, reference_subject_images, device, prompt_embeds.dtype) augmented_prompt_embeds = augmented_prompt_embeds.repeat( num_images_per_prompt, 1, 1) prompt_embeds =[prompt_embeds, augmented_prompt_embeds], dim=0) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) start_subject_conditioning_step = (1 - alpha_) * num_inference_steps extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) (null_prompt_embeds, text_prompt_embeds, augmented_prompt_embeds) = prompt_embeds.chunk(3) # 7. Denoising loop num_warmup_steps = len( timesteps) - num_inference_steps * self.scheduler.order if show_progress: timesteps = tqdm(timesteps) for i, t in enumerate(timesteps): latent_model_input = ([latents] * 2) if do_classifier_free_guidance else latents) latent_model_input = self.scheduler.scale_model_input( latent_model_input, t) if i <= start_subject_conditioning_step: current_prompt_embeds = [null_prompt_embeds, text_prompt_embeds], dim=0) else: current_prompt_embeds = [null_prompt_embeds, augmented_prompt_embeds], dim=0) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=current_prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * ( noise_pred_text - noise_pred_uncond) else: assert 0, 'Not Implemented' # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or (i + 1 > num_warmup_steps and (i + 1) % self.scheduler.order == 0): if callback is not None and i % callback_steps == 0: callback(i, t, latents) has_nsfw_concept = None if output_type == 'latent': image = latents has_nsfw_concept = None elif output_type == 'pil': # 8. Post-processing image = self.decode_latents(latents) # 10. Convert to PIL image = self.output_to_pil(image) else: # 8. Post-processing image = self.decode_latents(latents) # Offload last model to CPU if hasattr( self, 'final_offload_hook') and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (image, has_nsfw_concept) return OrderedDict( samples=image, nsfw_content_detected=has_nsfw_concept)
Read the Docs v: latest
On Read the Docs
Project Home

Free document hosting provided by Read the Docs.